# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. # The current version is guan-0.0.116, updated on July 21, 2022. # Installation: pip install --upgrade guan # Modules: # # Module 1: basic functions # # Module 2: Fourier transform # # Module 3: Hamiltonian of finite size systems # # Module 4: Hamiltonian of models in the reciprocal space # # Module 5: band structures and wave functions # # Module 6: Green functions # # Module 7: density of states # # Module 8: quantum transport # # Module 9: topological invariant # # Module 10: read and write # # Module 11: plot figures # # Module 12: data processing # # Module 13: others # import necessary packages import numpy as np import math import cmath import copy import guan # Module 1: basic functions ## test def test(): print('\nSuccess in the installation of Guan package!\n') ## Pauli matrices def sigma_0(): return np.eye(2) def sigma_x(): return np.array([[0, 1],[1, 0]]) def sigma_y(): return np.array([[0, -1j],[1j, 0]]) def sigma_z(): return np.array([[1, 0],[0, -1]]) ## Kronecker product of Pauli matrices def sigma_00(): return np.kron(guan.sigma_0(), guan.sigma_0()) def sigma_0x(): return np.kron(guan.sigma_0(), guan.sigma_x()) def sigma_0y(): return np.kron(guan.sigma_0(), guan.sigma_y()) def sigma_0z(): return np.kron(guan.sigma_0(), guan.sigma_z()) def sigma_x0(): return np.kron(guan.sigma_x(), guan.sigma_0()) def sigma_xx(): return np.kron(guan.sigma_x(), guan.sigma_x()) def sigma_xy(): return np.kron(guan.sigma_x(), guan.sigma_y()) def sigma_xz(): return np.kron(guan.sigma_x(), guan.sigma_z()) def sigma_y0(): return np.kron(guan.sigma_y(), guan.sigma_0()) def sigma_yx(): return np.kron(guan.sigma_y(), guan.sigma_x()) def sigma_yy(): return np.kron(guan.sigma_y(), guan.sigma_y()) def sigma_yz(): return np.kron(guan.sigma_y(), guan.sigma_z()) def sigma_z0(): return np.kron(guan.sigma_z(), guan.sigma_0()) def sigma_zx(): return np.kron(guan.sigma_z(), guan.sigma_x()) def sigma_zy(): return np.kron(guan.sigma_z(), guan.sigma_y()) def sigma_zz(): return np.kron(guan.sigma_z(), guan.sigma_z()) # Module 2: Fourier_transform # Fourier transform for discrete lattices def one_dimensional_fourier_transform(k, unit_cell, hopping): unit_cell = np.array(unit_cell) hopping = np.array(hopping) hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) return hamiltonian def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) return hamiltonian def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) return hamiltonian def one_dimensional_fourier_transform_with_k(unit_cell, hopping): import functools hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping) return hamiltonian_function def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2): import functools hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2) return hamiltonian_function def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3): import functools hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3) return hamiltonian_function ## calculate reciprocal lattice vectors def calculate_one_dimensional_reciprocal_lattice_vector(a1): b1 = 2*np.pi/a1 return b1 def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): a1 = np.array(a1) a2 = np.array(a2) a1 = np.append(a1, 0) a2 = np.append(a2, 0) a3 = np.array([0, 0, 1]) b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b1 = np.delete(b1, 2) b2 = np.delete(b2, 2) return b1, b2 def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): a1 = np.array(a1) a2 = np.array(a2) a3 = np.array(a3) b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3)) return b1, b2, b3 def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): import sympy b1 = 2*sympy.pi/a1 return b1 def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): import sympy a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0]) a3 = sympy.Matrix(1, 3, [0, 0, 1]) cross_a2_a3 = a2.cross(a3) cross_a3_a1 = a3.cross(a1) b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b1 = sympy.Matrix(1, 2, [b1[0], b1[1]]) b2 = sympy.Matrix(1, 2, [b2[0], b2[1]]) return b1, b2 def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): import sympy cross_a2_a3 = a2.cross(a3) cross_a3_a1 = a3.cross(a1) cross_a1_a2 = a1.cross(a2) b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3) return b1, b2, b3 # Module 3: Hamiltonian of finite size systems def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): on_site = np.array(on_site) hopping = np.array(hopping) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) for i0 in range(N): hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site for i0 in range(N-1): hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() if period == 1: hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() return hamiltonian def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() if period_1 == 1: for i2 in range(N2): hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() return hamiltonian def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() for i1 in range(N1): for i2 in range(N2): for i3 in range(N3-1): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() if period_1 == 1: for i2 in range(N2): for i3 in range(N3): hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() if period_3 == 1: for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() return hamiltonian def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): hamiltonian = np.zeros((2*N, 2*N)) for i in range(N): hamiltonian[i*2+0, i*2+0] = onsite_1 hamiltonian[i*2+1, i*2+1] = onsite_2 hamiltonian[i*2+0, i*2+1] = v hamiltonian[i*2+1, i*2+0] = v for i in range(N-1): hamiltonian[i*2+1, (i+1)*2+0] = w hamiltonian[(i+1)*2+0, i*2+1] = w if period==1: hamiltonian[0, 2*N-1] = w hamiltonian[2*N-1, 0] = w return hamiltonian def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): hopping = np.zeros((4*N, 4*N), dtype=complex) for i0 in range(N): hopping[4*i0+0, 4*i0+0] = eta hopping[4*i0+1, 4*i0+1] = eta hopping[4*i0+2, 4*i0+2] = eta hopping[4*i0+3, 4*i0+3] = eta hopping[4*i0+1, 4*i0+0] = 1 hopping[4*i0+2, 4*i0+3] = 1 return hopping def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4) hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1) hopping_2 = np.zeros((4, 4), dtype=complex) hopping_2[3, 0] = 1 hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) return hamiltonian def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): constant = -np.sqrt(3)/2 h00 = np.zeros((2, 2), dtype=complex) h00[0, 0] = staggered_potential h00[1, 1] = -staggered_potential h00[0, 1] = -1j*constant*t*np.sin(qy) h00[1, 0] = 1j*constant*t*np.sin(qy) h01 = np.zeros((2, 2), dtype=complex) h01[0, 0] = eta h01[1, 1] = eta if valley_index == 0: h01[0, 1] = constant*t*(-1j/2) h01[1, 0] = constant*t*(-1j/2) else: h01[0, 1] = constant*t*(1j/2) h01[1, 0] = constant*t*(1j/2) return h00, h01 def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((4, 4), dtype=complex) H1 = np.zeros((4, 4), dtype=complex) H2 = np.zeros((4, 4), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H0[2, 2] = E_s H0[3, 3] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[2, 2] = V_ss H1[3, 3] = V_pp H1[0, 1] = V_sp H1[1, 0] = -np.conj(V_sp) H1[2, 3] = np.conj(V_sp) H1[3, 2] = -V_sp H2[0, 0] = V_ss H2[1, 1] = V_pp H2[2, 2] = V_ss H2[3, 3] = V_pp H2[0, 1] = 1j*V_sp H2[1, 0] = 1j*np.conj(V_sp) H2[2, 3] = -1j*np.conj(V_sp) H2[3, 2] = -1j*V_sp return H0, H1, H2 def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((2, 2), dtype=complex) H1 = np.zeros((2, 2), dtype=complex) H2 = np.zeros((2, 2), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[0, 1] = V_sp H1[1, 0] = -np.conj(V_sp) H2[0, 0] = V_ss H2[1, 1] = V_pp H2[0, 1] = 1j*V_sp H2[1, 0] = 1j*np.conj(V_sp) return H0, H1, H2 def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((2, 2), dtype=complex) H1 = np.zeros((2, 2), dtype=complex) H2 = np.zeros((2, 2), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[0, 1] = np.conj(V_sp) H1[1, 0] = -V_sp H2[0, 0] = V_ss H2[1, 1] = V_pp H2[0, 1] = -1j*np.conj(V_sp) H2[1, 0] = -1j*V_sp return H0, H1, H2 # Module 4: Hamiltonian of models in the reciprocal space def hamiltonian_of_simple_chain(k): hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) return hamiltonian def hamiltonian_of_square_lattice(k1, k2): hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) return hamiltonian def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells for i in range(N-1): h00[i, i+1] = 1 h00[i+1, i] = 1 if period == 1: h00[N-1, 0] = 1 h00[0, N-1] = 1 for i in range(N): h01[i, i] = 1 hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) return hamiltonian def hamiltonian_of_cubic_lattice(k1, k2, k3): hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) return hamiltonian def hamiltonian_of_ssh_model(k, v=0.6, w=1): hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0,1] = v+w*cmath.exp(-1j*k) hamiltonian[1,0] = v+w*cmath.exp(1j*k) return hamiltonian def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a=1/math.sqrt(3)): h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h0[0, 0] = staggered_potential h0[1, 1] = -staggered_potential h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() hamiltonian = h0 + h1 return hamiltonian def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0): hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 0] = staggered_potential hamiltonian[1, 1] = -staggered_potential constant = -np.sqrt(3)/2 if valley_index == 0: hamiltonian[0, 1] = constant*t*(qx-1j*qy) hamiltonian[1, 0] = constant*t*(qx+1j*qy) else: hamiltonian[0, 1] = constant*t*(-qx-1j*qy) hamiltonian[1, 0] = constant*t*(-qx+1j*qy) return hamiltonian def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0): hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 0] = staggered_potential hamiltonian[1, 1] = -staggered_potential constant = -np.sqrt(3)/2 if valley_index == 0: hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy)) hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy)) else: hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy)) hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy)) return hamiltonian def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t h00[i*4+1, i*4+0] = t h00[i*4+1, i*4+2] = t h00[i*4+2, i*4+1] = t h00[i*4+2, i*4+3] = t h00[i*4+3, i*4+2] = t for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t h00[(i+1)*4+0, i*4+3] = t if period == 1: h00[(N-1)*4+3, 0] = t h00[0, (N-1)*4+3] = t for i in range(N): h01[i*4+1, i*4+0] = t h01[i*4+2, i*4+3] = t hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) return hamiltonian def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=math.pi/4, a=1/math.sqrt(3)): h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping h0[0, 0] = M h0[1, 1] = -M h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) hamiltonian = h0 + h1 + h2 + h2.transpose().conj() return hamiltonian def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4, period=0): h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t1 h00[i*4+1, i*4+0] = t1 h00[i*4+1, i*4+2] = t1 h00[i*4+2, i*4+1] = t1 h00[i*4+2, i*4+3] = t1 h00[i*4+3, i*4+2] = t1 h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi) h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj() h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi) h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj() for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t1 h00[(i+1)*4+0, i*4+3] = t1 h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi) h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() if period == 1: h00[(N-1)*4+3, 0] = t1 h00[0, (N-1)*4+3] = t1 h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi) h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj() h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi) h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj() for i in range(N): h01[i*4+1, i*4+0] = t1 h01[i*4+2, i*4+3] = t1 h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi) h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi) h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi) h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi) h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi) h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi) if i != 0: h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi) for i in range(N-1): h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) return hamiltonian def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2) hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2) hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2) hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) return hamiltonian def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): hamiltonian = np.zeros((4, 4), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = np.conj(d1_d2) hamiltonian[1, 0] = d1_d2 hamiltonian[2, 2] = varepsilon+d3 hamiltonian[3, 3] = varepsilon-d3 hamiltonian[2, 3] = -d1_d2 hamiltonian[3, 2] = -np.conj(d1_d2) return hamiltonian def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): hamiltonian = np.zeros((2, 2), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = np.conj(d1_d2) hamiltonian[1, 0] = d1_d2 return hamiltonian def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): hamiltonian = np.zeros((2, 2), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = -d1_d2 hamiltonian[1, 0] = -np.conj(d1_d2) return hamiltonian def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): # label of atoms in a unit cell # (2) —— (0) # | | # (1) —— (3) hamiltonian = np.zeros((4, 4), dtype=complex) hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx) hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx) hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky) hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky) hamiltonian[2, 0] = np.conj(hamiltonian[0, 2]) hamiltonian[3, 1] = np.conj(hamiltonian[1, 3]) hamiltonian[3, 0] = np.conj(hamiltonian[0, 3]) hamiltonian[2, 1] = np.conj(hamiltonian[1, 2]) return hamiltonian def hamiltonian_of_kagome_lattice(kx, ky, t=1): k1_dot_a1 = kx k2_dot_a2 = kx/2+ky*math.sqrt(3)/2 k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2 hamiltonian = np.zeros((3, 3), dtype=complex) hamiltonian[0, 1] = 2*math.cos(k1_dot_a1) hamiltonian[0, 2] = 2*math.cos(k2_dot_a2) hamiltonian[1, 2] = 2*math.cos(k3_dot_a3) hamiltonian = hamiltonian + hamiltonian.transpose().conj() hamiltonian = -t*hamiltonian return hamiltonian # Module 5: band structures and wave functions ## band structures def calculate_eigenvalue(hamiltonian): if np.array(hamiltonian).shape==(): eigenvalue = np.real(hamiltonian) else: eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) return eigenvalue def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): dim_x = np.array(x_array).shape[0] i0 = 0 if np.array(hamiltonian_function(0)).shape==(): eigenvalue_array = np.zeros((dim_x, 1)) for x0 in x_array: hamiltonian = hamiltonian_function(x0) eigenvalue_array[i0, 0] = np.real(hamiltonian) i0 += 1 else: dim = np.array(hamiltonian_function(0)).shape[0] eigenvalue_array = np.zeros((dim_x, dim)) for x0 in x_array: if print_show==1: print(x0) hamiltonian = hamiltonian_function(x0) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue_array[i0, :] = eigenvalue i0 += 1 return eigenvalue_array def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0): dim_x = np.array(x_array).shape[0] dim_y = np.array(y_array).shape[0] if np.array(hamiltonian_function(0,0)).shape==(): eigenvalue_array = np.zeros((dim_y, dim_x, 1)) i0 = 0 for y0 in y_array: j0 = 0 for x0 in x_array: hamiltonian = hamiltonian_function(x0, y0) eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) j0 += 1 i0 += 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] eigenvalue_array = np.zeros((dim_y, dim_x, dim)) i0 = 0 for y0 in y_array: j0 = 0 if print_show==1: print(y0) for x0 in x_array: if print_show_more==1: print(x0) hamiltonian = hamiltonian_function(x0, y0) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue_array[i0, j0, :] = eigenvalue j0 += 1 i0 += 1 return eigenvalue_array ## wave functions def calculate_eigenvector(hamiltonian): eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) return eigenvector ## find vector with the same gauge def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6): phase_1_pre = 0 phase_2_pre = np.pi for i0 in range(n_test): test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref)) test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref)) if test_1 < precision: phase = phase_1_pre if show_times==1: print('Binary search times=', i0) break if i0 == n_test-1: phase = phase_1_pre if show_error==1: print('Gauge not found with binary search times=', i0) if test_1 < test_2: if i0 == 0: phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 else: phase_1 = phase_1_pre phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 else: if i0 == 0: phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2 else: phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_2_pre phase_1_pre = phase_1 phase_2_pre = phase_2 vector_target = vector_target*cmath.exp(1j*phase) if show_phase==1: print('Phase=', phase) return vector_target def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): vector = np.array(vector) if index == None: index = np.argmax(np.abs(vector)) sign_pre = np.sign(np.imag(vector[index])) for phase in np.arange(0, 2*np.pi, precision): sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase))) if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre: break sign_pre = sign vector = vector*cmath.exp(1j*phase) if np.real(vector[index]) < 0: vector = -vector return vector def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005): vector_sum = 0 Num_k = np.array(vector_array).shape[0] for i0 in range(Num_k): vector_sum += np.abs(vector_array[i0]) index = np.argmax(np.abs(vector_sum)) for i0 in range(Num_k): vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index) return vector_array def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0): vector1 = np.array(vector1) vector2 = np.array(vector2) if index1 == None: index1 = np.argmax(np.abs(vector1)) if index2 == None: index2 = np.argmax(np.abs(vector2)) if np.abs(vector1[index2])>criterion or np.abs(vector2[index1])>criterion: for theta in np.arange(0, 2*math.pi, precision): if show_theta==1: print(theta) for phi1 in np.arange(0, 2*math.pi, precision): for phi2 in np.arange(0, 2*math.pi, precision): vector1_test = cmath.exp(1j*phi1)*vector1*math.cos(theta)+cmath.exp(1j*phi2)*vector2*math.sin(theta) vector2_test = -cmath.exp(-1j*phi2)*vector1*math.sin(theta)+cmath.exp(-1j*phi1)*vector2*math.cos(theta) if np.abs(vector1_test[index2]) 1.001: print('Error Alert: scattering matrix is not normalized!') return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active): if np.array(transmission_matrix).shape==(): dim = 1 else: dim = np.array(transmission_matrix).shape[0] number_of_active_channels = ind_right_active number_of_evanescent_channels = dim-ind_right_active k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active]) k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active]) velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active]) velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active]) transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])) reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])) total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt'): number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(fermi_energy, h00, h01, length) if print_show == 1: print('\nActive channel (left or right) = ', number_of_active_channels) print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n') print('K of right-moving active channels:\n', k_of_right_moving_active_channels) print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n') print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels) print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n') print('Transmission matrix:\n', transmission_matrix_for_active_channels) print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n') print('Total transmission of channels:\n', total_transmission_of_channels) print('Total conductance = ', total_conductance, '\n') print('Total reflection of channels:\n', total_reflection_of_channels) print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n') if write_file == 1: with open(filename+'.'+format, 'w') as f: f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n') f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n') f.write('Channel K Velocity\n') for ind0 in range(number_of_active_channels): f.write(' '+str(ind0 + 1) + ' | '+str(k_of_right_moving_active_channels[ind0])+' ' + str(velocity_of_right_moving_active_channels[ind0])+'\n') f.write('\n') for ind0 in range(number_of_active_channels): f.write(' -' + str(ind0 + 1) + ' | ' + str(k_of_left_moving_active_channels[ind0]) + ' ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n') f.write('\nScattering matrix:\n ') for ind0 in range(number_of_active_channels): f.write(str(ind0+1)+' ') f.write('\n') for ind1 in range(number_of_active_channels): f.write(' '+str(ind1+1)+' ') for ind2 in range(number_of_active_channels): f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+' ') f.write('\n') f.write('\n') for ind1 in range(number_of_active_channels): f.write(' -'+str(ind1+1)+' ') for ind2 in range(number_of_active_channels): f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+' ') f.write('\n') f.write('\n') f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n') f.write('Total conductance = '+str(total_conductance)+'\n') # Module 9: topological invariant def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0): if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] delta = 2*math.pi/precision chern_number = np.zeros(dim, dtype=complex) for kx in np.arange(-math.pi, math.pi, delta): if print_show == 1: print(kx) for ky in np.arange(-math.pi, math.pi, delta): H = hamiltonian_function(kx, ky) vector = guan.calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta, ky) vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta) vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) chern_number[i] = chern_number[i] + F chern_number = chern_number/(2*math.pi*1j) return chern_number def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0): delta = 2*math.pi/precision_of_plaquettes chern_number = 0 for kx in np.arange(-math.pi, math.pi, delta): if print_show == 1: print(kx) for ky in np.arange(-math.pi, math.pi, delta): vector_array = [] # line_1 for i0 in range(precision_of_Wilson_loop+1): H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_2 for i0 in range(precision_of_Wilson_loop): H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1)) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_3 for i0 in range(precision_of_Wilson_loop): H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_4 for i0 in range(precision_of_Wilson_loop-1): H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1)) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) Wilson_loop = 1 for i0 in range(len(vector_array)-1): Wilson_loop = Wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1]) Wilson_loop = Wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0]) arg = np.log(np.diagonal(Wilson_loop))/1j chern_number = chern_number + arg chern_number = chern_number/(2*math.pi) return chern_number def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] chern_number = np.zeros(dim, dtype=complex) L1 = 4*math.sqrt(3)*math.pi/9/a L2 = 2*math.sqrt(3)*math.pi/9/a L3 = 2*math.pi/3/a delta1 = 2*L1/precision delta3 = 2*L3/precision for kx in np.arange(-L1, L1, delta1): if print_show == 1: print(kx) for ky in np.arange(-L3, L3, delta3): if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*math.tan(math.pi/3)<=ky<=(L1-kx)*math.tan(math.pi/3)) or (kx<-L2 and -(kx-(-L1))*math.tan(math.pi/3)<=ky<=(kx-(-L1))*math.tan(math.pi/3)): H = hamiltonian_function(kx, ky) vector = guan.calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta1, ky) vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta3) vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3) vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) chern_number[i] = chern_number[i] + F chern_number = chern_number/(2*math.pi*1j) return chern_number def calculate_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision=100, print_show=0): k_array = np.linspace(k_min, k_max, precision) dim = np.array(hamiltonian_function(0)).shape[0] wilson_loop_array = np.ones(dim, dtype=complex) for i in range(dim): if print_show == 1: print(i) eigenvector_array = [] for k in k_array: eigenvector = guan.calculate_eigenvector(hamiltonian_function(k)) if k != k_max: eigenvector_array.append(eigenvector[:, i]) else: eigenvector_array.append(eigenvector_array[0]) for i0 in range(precision-1): F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) return wilson_loop_array # Module 10: read and write def read_one_dimensional_data(filename='a', format='txt'): f = open(filename+'.'+format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) for row in row_list: column = np.array(row.split()) if column.shape[0] != 0: x_array = np.append(x_array, [float(column[0])], axis=0) y_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): y_row[dim0] = float(column[dim0+1]) if np.array(y_array).shape[0] == 0: y_array = [y_row] else: y_array = np.append(y_array, [y_row], axis=0) return x_array, y_array def read_two_dimensional_data(filename='a', format='txt'): f = open(filename+'.'+format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) matrix = np.array([]) for i0 in range(row_list.shape[0]): column = np.array(row_list[i0].split()) if i0 == 0: x_str = column[1::] x_array = np.zeros(x_str.shape[0]) for i00 in range(x_str.shape[0]): x_array[i00] = float(x_str[i00]) elif column.shape[0] != 0: y_array = np.append(y_array, [float(column[0])], axis=0) matrix_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): matrix_row[dim0] = float(column[dim0+1]) if np.array(matrix).shape[0] == 0: matrix = [matrix_row] else: matrix = np.append(matrix, [matrix_row], axis=0) return x_array, y_array, matrix def write_one_dimensional_data(x_array, y_array, filename='a', format='txt'): x_array = np.array(x_array) y_array = np.array(y_array) with open(filename+'.'+format, 'w') as f: i0 = 0 for x0 in x_array: f.write(str(x0)+' ') if len(y_array.shape) == 1: f.write(str(y_array[i0])+'\n') elif len(y_array.shape) == 2: for j0 in range(y_array.shape[1]): f.write(str(y_array[i0, j0])+' ') f.write('\n') i0 += 1 def write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt'): x_array = np.array(x_array) y_array = np.array(y_array) matrix = np.array(matrix) with open(filename+'.'+format, 'w') as f: f.write('0 ') for x0 in x_array: f.write(str(x0)+' ') f.write('\n') i0 = 0 for y0 in y_array: f.write(str(y0)) j0 = 0 for x0 in x_array: f.write(' '+str(matrix[i0, j0])+' ') j0 += 1 f.write('\n') i0 += 1 def print_array(array, show_index=0, index_type=0): if show_index==0: for i0 in array: print(i0) else: if index_type==0: index = 0 for i0 in array: print(index, i0) index += 1 else: index = 0 for i0 in array: index += 1 print(index, i0) # Module 11: plot figures def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left) ax.grid() ax.tick_params(labelsize=labelsize) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] return plt, fig, ax def plot_without_starting_fig(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None): ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y_min=min(y_array) if y_max==None: y_max=max(y_array) ax.set_ylim(y_min, y_max) def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2): plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y_min=min(y_array) if y_max==None: y_max=max(y_array) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2): plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y_min=min([y1_min, y2_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y_max=max([y1_max, y2_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2): plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y_min=min([y1_min, y2_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y_max=max([y1_max, y2_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2): plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y3_min=min(y3_array) y_min=min([y1_min, y2_min, y3_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y3_max=max(y3_array) y_max=max([y1_max, y2_max, y3_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2): plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y3_min=min(y3_array) y_min=min([y1_min, y2_min, y3_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y3_max=max(y3_array) y_max=max([y1_max, y2_max, y3_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100): import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator matrix = np.array(matrix) fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) plt.subplots_adjust(bottom=0.1, right=0.65) x_array, y_array = np.meshgrid(x_array, y_array) if len(matrix.shape) == 2: surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False) elif len(matrix.shape) == 3: for i0 in range(matrix.shape[2]): surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.zaxis.set_major_locator(LinearLocator(5)) ax.zaxis.set_major_formatter('{x:.2f}') if z_min!=None or z_max!=None: if z_min==None: z_min=matrix.min() if z_max==None: z_max=matrix.max() ax.set_zlim(z_min, z_max) ax.tick_params(labelsize=labelsize) labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.8, 0.1, 0.05, 0.8]) cbar = fig.colorbar(surf, cax=cax) cbar.ax.tick_params(labelsize=labelsize) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300): import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2) x_array, y_array = np.meshgrid(x_array, y_array) contour = ax.contourf(x_array,y_array,matrix,cmap='jet') ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') ax.tick_params(labelsize=labelsize) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.8, 0.2, 0.05, 0.68]) cbar = fig.colorbar(contour, cax=cax) cbar.ax.tick_params(labelsize=labelsize) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', format='eps', dpi=300): import matplotlib.pyplot as plt coordinate_array = np.array(coordinate_array) print(coordinate_array.shape) x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0]) y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1]) fig, ax = plt.subplots(figsize=(6*x_range/y_range,6)) plt.subplots_adjust(left=0, bottom=0, right=1, top=1) plt.axis('off') if draw_lines==1: for i1 in range(coordinate_array.shape[0]): for i2 in range(coordinate_array.shape[0]): if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance: ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth) if draw_dots==1: for i in range(coordinate_array.shape[0]): ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize) if show==1: plt.show() if save==1: if format=='eps': plt.savefig(filename+'.'+format) else: plt.savefig(filename+'.'+format, dpi=dpi) def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', format='jpg', dpi=300): num = np.array(image_path_array).shape[0] if num != 2: print('Error: The number of images should be two!') else: import matplotlib.pyplot as plt import matplotlib.image as mpimg fig = plt.figure(figsize=figsize) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) image_1 = mpimg.imread(image_path_array[0]) image_2 = mpimg.imread(image_path_array[1]) ax1.imshow(image_1) ax2.imshow(image_2) ax1.axis('off') ax2.axis('off') if show == 1: plt.show() if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) plt.close('all') def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', format='jpg', dpi=300): num = np.array(image_path_array).shape[0] if num != 3: print('Error: The number of images should be three!') else: import matplotlib.pyplot as plt import matplotlib.image as mpimg fig = plt.figure(figsize=figsize) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) image_1 = mpimg.imread(image_path_array[0]) image_2 = mpimg.imread(image_path_array[1]) image_3 = mpimg.imread(image_path_array[2]) ax1.imshow(image_1) ax2.imshow(image_2) ax3.imshow(image_3) ax1.axis('off') ax2.axis('off') ax3.axis('off') if show == 1: plt.show() if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) plt.close('all') def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', format='jpg', dpi=300): num = np.array(image_path_array).shape[0] if num != 4: print('Error: The number of images should be four!') else: import matplotlib.pyplot as plt import matplotlib.image as mpimg fig = plt.figure(figsize=figsize) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) image_1 = mpimg.imread(image_path_array[0]) image_2 = mpimg.imread(image_path_array[1]) image_3 = mpimg.imread(image_path_array[2]) image_4 = mpimg.imread(image_path_array[3]) ax1.imshow(image_1) ax2.imshow(image_2) ax3.imshow(image_3) ax4.imshow(image_4) ax1.axis('off') ax2.axis('off') ax3.axis('off') ax4.axis('off') if show == 1: plt.show() if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) plt.close('all') def make_gif(image_path_array, filename='a', duration=0.1): import imageio images = [] for image_path in image_path_array: im = imageio.imread(image_path) images.append(im) imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) # Module 12: data processing def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0): num_all = np.array(parameter_array_all).shape[0] if num_all%cpus == 0: num_parameter = int(num_all/cpus) parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter] else: num_parameter = int(num_all/(cpus-1)) if task_index != cpus-1: parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter] else: parameter_array = parameter_array_all[task_index*num_parameter:num_all] return parameter_array def find_close_values_in_one_array(array, precision=1e-2): new_array = [] i0 = 0 for a1 in array: j0 = 0 for a2 in array: if j0>i0 and abs(a1-a2).*?

', html, re.S) if random_on==1: random.shuffle(contents) if reverse==1: contents.reverse() for content in contents: soup2 = BeautifulSoup(content, features='lxml') all_h2 = soup2.find_all('h2') for h2 in all_h2: if re.search('\d*. ', h2.get_text()): word = re.findall('[a-zA-Z].*', h2.get_text(), re.S)[0] exist = os.path.exists(directory+word+'.mp3') if not exist: try: if re.search(word, html_file): r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True) with open(directory+word+'.mp3', 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) except: pass print(h2.get_text()) try: pygame.mixer.init() track = pygame.mixer.music.load(directory+word+'.mp3') pygame.mixer.music.play() if show_link==1: print('https://www.ldoceonline.com/dictionary/'+word) except: pass translation = re.findall('

.*?

', content, re.S)[0][3:-4] if show_translation==1: time.sleep(translation_time) print(translation) time.sleep(rest_time) pygame.mixer.music.stop() print() def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1): from bs4 import BeautifulSoup import re import urllib.request import requests import os import pygame import time import ssl import random ssl._create_default_https_context = ssl._create_unverified_context html = urllib.request.urlopen("https://www.guanjihuan.com/archives/10897").read().decode('utf-8') directory = 'prons/' exist_directory = os.path.exists(directory) html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/periodic_table_of_elements/"+directory).read().decode('utf-8') if exist_directory == 0: os.makedirs(directory) soup = BeautifulSoup(html, features='lxml') contents = re.findall('

.*?

', html, re.S) if random_on==1: random.shuffle(contents) for content in contents: soup2 = BeautifulSoup(content, features='lxml') all_h2 = soup2.find_all('h2') for h2 in all_h2: if re.search('\d*. ', h2.get_text()): word = re.findall('[a-zA-Z].* \(', h2.get_text(), re.S)[0][:-2] exist = os.path.exists(directory+word+'.mp3') if not exist: try: if re.search(word, html_file): r = requests.get("https://file.guanjihuan.com/words/periodic_table_of_elements/prons/"+word+".mp3", stream=True) with open(directory+word+'.mp3', 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) except: pass print(h2.get_text()) try: pygame.mixer.init() track = pygame.mixer.music.load(directory+word+'.mp3') pygame.mixer.music.play() if show_link==1: print('https://www.merriam-webster.com/dictionary/'+word) except: pass translation = re.findall('

.*?

', content, re.S)[0][3:-4] if show_translation==1: time.sleep(translation_time) print(translation) time.sleep(rest_time) pygame.mixer.music.stop() print()