# Module: Green_functions # 输入哈密顿量,得到格林函数 def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): import numpy as np if np.array(hamiltonian).shape==(): dim = 1 else: dim = np.array(hamiltonian).shape[0] green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) return green # 在Dyson方程中的一个中间格林函数G_{nn}^{n} def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): import numpy as np h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) return green_nn_n # 在Dyson方程中的一个中间格林函数G_{in}^{n} def green_function_in_n(green_in_n_minus, h01, green_nn_n): import numpy as np green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) return green_in_n # 在Dyson方程中的一个中间格林函数G_{ni}^{n} def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): import numpy as np h01 = np.array(h01) green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) return green_ni_n # 在Dyson方程中的一个中间格林函数G_{ii}^{n} def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): import numpy as np green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) return green_ii_n # 计算转移矩阵(该矩阵可以用来计算表面格林函数) def transfer_matrix(fermi_energy, h00, h01): import numpy as np h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transfer = np.zeros((2*dim, 2*dim), dtype=complex) transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) transfer[dim:2*dim, 0:dim] = np.identity(dim) transfer[dim:2*dim, dim:2*dim] = 0 return transfer # 计算电极的表面格林函数 def surface_green_function_of_lead(fermi_energy, h00, h01): import numpy as np h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] fermi_energy = fermi_energy+1e-9*1j transfer = transfer_matrix(fermi_energy, h00, h01) eigenvalue, eigenvector = np.linalg.eig(transfer) ind = np.argsort(np.abs(eigenvalue)) temp = np.zeros((2*dim, 2*dim), dtype=complex) i0 = 0 for ind0 in ind: temp[:, i0] = eigenvector[:, ind0] i0 += 1 s1 = temp[dim:2*dim, 0:dim] s2 = temp[0:dim, 0:dim] s3 = temp[dim:2*dim, dim:2*dim] s4 = temp[0:dim, dim:2*dim] right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) return right_lead_surface, left_lead_surface # 计算电极的自能(基于Dyson方程的小矩阵形式) def self_energy_of_lead(fermi_energy, h00, h01): import numpy as np import guan h01 = np.array(h01) right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j return right_self_energy, left_self_energy, gamma_right, gamma_left # 计算电极的自能(基于中心区整体的大矩阵形式) def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): import numpy as np import guan h_LC = np.array(h_LC) h_CR = np.array(h_CR) right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj()) left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j return right_self_energy, left_self_energy, gamma_right, gamma_left # 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算) def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): import numpy as np import guan h_lead_to_center = np.array(h_lead_to_center) right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center) gamma = (self_energy - self_energy.transpose().conj())*1j return self_energy, gamma # 计算考虑电极自能后的中心区的格林函数 def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): import numpy as np import guan dim = np.array(center_hamiltonian).shape[0] right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) return green, gamma_right, gamma_left # 计算用于计算局域电流的格林函数G_n def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): import numpy as np import guan right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy) G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj())) return G_n