# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. # Modules # # Module 1: basic_functions # # Module 2: Fourier_transform # # Module 3: Hamiltonian_of_finite_size_systems # # Module 4: Hamiltonian_of_models_in_the_reciprocal_space # # Module 5: band_structures_and_wave_functions # # Module 6: Green_functions # # Module 7: density_of_states # # Module 8: quantum_transport # # Module 9: topological_invariant # # Module 10: read_and_write # # Module 11: plot_figures # # Module 12: others # import packages import numpy as np from math import * import cmath import functools import copy import guan # Module 1: basic functions ## test def test(): print('\nSuccess in the installation of Guan package!\n') ## Pauli matrices def sigma_0(): return np.eye(2) def sigma_x(): return np.array([[0, 1],[1, 0]]) def sigma_y(): return np.array([[0, -1j],[1j, 0]]) def sigma_z(): return np.array([[1, 0],[0, -1]]) ## Kronecker product of Pauli matrices def sigma_00(): return np.kron(sigma_0(), sigma_0()) def sigma_0x(): return np.kron(sigma_0(), sigma_x()) def sigma_0y(): return np.kron(sigma_0(), sigma_y()) def sigma_0z(): return np.kron(sigma_0(), sigma_z()) def sigma_x0(): return np.kron(sigma_x(), sigma_0()) def sigma_xx(): return np.kron(sigma_x(), sigma_x()) def sigma_xy(): return np.kron(sigma_x(), sigma_y()) def sigma_xz(): return np.kron(sigma_x(), sigma_z()) def sigma_y0(): return np.kron(sigma_y(), sigma_0()) def sigma_yx(): return np.kron(sigma_y(), sigma_x()) def sigma_yy(): return np.kron(sigma_y(), sigma_y()) def sigma_yz(): return np.kron(sigma_y(), sigma_z()) def sigma_z0(): return np.kron(sigma_z(), sigma_0()) def sigma_zx(): return np.kron(sigma_z(), sigma_x()) def sigma_zy(): return np.kron(sigma_z(), sigma_y()) def sigma_zz(): return np.kron(sigma_z(), sigma_z()) # Module 2: Fourier_transform # Fourier_transform for discrete lattices def one_dimensional_fourier_transform(k, unit_cell, hopping): unit_cell = np.array(unit_cell) hopping = np.array(hopping) hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) return hamiltonian def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) return hamiltonian def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) return hamiltonian def one_dimensional_fourier_transform_with_k(unit_cell, hopping): hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping) return hamiltonian_function def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2): hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2) return hamiltonian_function def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3): hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3) return hamiltonian_function ## calculate reciprocal lattice vectors def calculate_one_dimensional_reciprocal_lattice_vector(a1): b1 = 2*np.pi/a1 return b1 def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): a1 = np.array(a1) a2 = np.array(a2) a1 = np.append(a1, 0) a2 = np.append(a2, 0) a3 = np.array([0, 0, 1]) b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b1 = np.delete(b1, 2) b2 = np.delete(b2, 2) return b1, b2 def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): a1 = np.array(a1) a2 = np.array(a2) a3 = np.array(a3) b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3)) return b1, b2, b3 def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): import sympy b1 = 2*sympy.pi/a1 return b1 def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): import sympy a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0]) a3 = sympy.Matrix(1, 3, [0, 0, 1]) cross_a2_a3 = a2.cross(a3) cross_a3_a1 = a3.cross(a1) b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b1 = sympy.Matrix(1, 2, [b1[0], b1[1]]) b2 = sympy.Matrix(1, 2, [b2[0], b2[1]]) return b1, b2 def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): import sympy cross_a2_a3 = a2.cross(a3) cross_a3_a1 = a3.cross(a1) cross_a1_a2 = a1.cross(a2) b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3) return b1, b2, b3 # Module 3: Hamiltonian of finite size systems def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): on_site = np.array(on_site) hopping = np.array(hopping) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) for i0 in range(N): hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site for i0 in range(N-1): hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() if period == 1: hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() return hamiltonian def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() if period_1 == 1: for i2 in range(N2): hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() return hamiltonian def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() for i1 in range(N1): for i2 in range(N2): for i3 in range(N3-1): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() if period_1 == 1: for i2 in range(N2): for i3 in range(N3): hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() if period_3 == 1: for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() return hamiltonian def hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N): hopping = np.zeros((4*N, 4*N), dtype=complex) for i0 in range(N): hopping[4*i0+1, 4*i0+0] = 1 hopping[4*i0+2, 4*i0+3] = 1 return hopping def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4) hopping_1 = guan.hopping_matrix_along_zigzag_direction_for_graphene_ribbon(1) hopping_2 = np.zeros((4, 4), dtype=complex) hopping_2[3, 0] = 1 hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) return hamiltonian # Module 4: Hamiltonian of models in the reciprocal space def hamiltonian_of_simple_chain(k): hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) return hamiltonian def hamiltonian_of_square_lattice(k1, k2): hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) return hamiltonian def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10): h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells for i in range(N-1): h00[i, i+1] = 1 h00[i+1, i] = 1 for i in range(N): h01[i, i] = 1 hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) return hamiltonian def hamiltonian_of_cubic_lattice(k1, k2, k3): hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) return hamiltonian def hamiltonian_of_ssh_model(k, v=0.6, w=1): hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0,1] = v+w*cmath.exp(-1j*k) hamiltonian[1,0] = v+w*cmath.exp(1j*k) return hamiltonian def hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/sqrt(3)): h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h0[0, 0] = M h0[1, 1] = -M h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() hamiltonian = h0 + h1 return hamiltonian def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1): h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t h00[i*4+1, i*4+0] = t h00[i*4+1, i*4+2] = t h00[i*4+2, i*4+1] = t h00[i*4+2, i*4+3] = t h00[i*4+3, i*4+2] = t for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t h00[(i+1)*4+0, i*4+3] = t for i in range(N): h01[i*4+1, i*4+0] = t h01[i*4+2, i*4+3] = t hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) return hamiltonian def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=pi/4, a=1/sqrt(3)): h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping h0[0, 0] = M h0[1, 1] = -M h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)) h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)) hamiltonian = h0 + h1 + h2 + h2.transpose().conj() return hamiltonian def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=pi/4): h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t1 h00[i*4+1, i*4+0] = t1 h00[i*4+1, i*4+2] = t1 h00[i*4+2, i*4+1] = t1 h00[i*4+2, i*4+3] = t1 h00[i*4+3, i*4+2] = t1 h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi) h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj() h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi) h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj() for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t1 h00[(i+1)*4+0, i*4+3] = t1 h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi) h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() for i in range(N): h01[i*4+1, i*4+0] = t1 h01[i*4+2, i*4+3] = t1 h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi) h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi) h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi) h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi) h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi) h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi) if i != 0: h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi) for i in range(N-1): h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) return hamiltonian def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 1] = 2*t1*cos(k1)-1j*2*t1*cos(k2) hamiltonian[1, 0] = 2*t1*cos(k1)+1j*2*t1*cos(k2) hamiltonian[0, 0] = m+2*t3*sin(k1)+2*t3*sin(k2)+2*t2*cos(k1+k2) hamiltonian[1, 1] = -(m+2*t3*sin(k1)+2*t3*sin(k2)+2*t2*cos(k1+k2)) return hamiltonian # Module 5: band_structures_and_wave_functions ## band structures def calculate_eigenvalue(hamiltonian): if np.array(hamiltonian).shape==(): eigenvalue = np.real(hamiltonian) else: eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) return eigenvalue def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): dim_x = np.array(x_array).shape[0] i0 = 0 if np.array(hamiltonian_function(0)).shape==(): eigenvalue_array = np.zeros((dim_x, 1)) for x0 in x_array: hamiltonian = hamiltonian_function(x0) eigenvalue_array[i0, 0] = np.real(hamiltonian) i0 += 1 else: dim = np.array(hamiltonian_function(0)).shape[0] eigenvalue_array = np.zeros((dim_x, dim)) for x0 in x_array: if print_show==1: print(x0) hamiltonian = hamiltonian_function(x0) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue_array[i0, :] = eigenvalue i0 += 1 return eigenvalue_array def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0): dim_x = np.array(x_array).shape[0] dim_y = np.array(y_array).shape[0] if np.array(hamiltonian_function(0,0)).shape==(): eigenvalue_array = np.zeros((dim_y, dim_x, 1)) i0 = 0 for y0 in y_array: j0 = 0 for x0 in x_array: hamiltonian = hamiltonian_function(x0, y0) eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) j0 += 1 i0 += 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] eigenvalue_array = np.zeros((dim_y, dim_x, dim)) i0 = 0 for y0 in y_array: j0 = 0 if print_show==1: print(y0) for x0 in x_array: if print_show_more==1: print(x0) hamiltonian = hamiltonian_function(x0, y0) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue_array[i0, j0, :] = eigenvalue j0 += 1 i0 += 1 return eigenvalue_array ## wave functions def calculate_eigenvector(hamiltonian): eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) return eigenvector ## find vector with the same gauge def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=10001, precision=1e-6): phase_1_pre = 0 phase_2_pre = np.pi for i0 in range(n_test): test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref)) test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref)) if test_1 < precision: phase = phase_1_pre if show_times==1: print('Binary search times=', i0) break if i0 == n_test-1: phase = phase_1_pre if show_error==1: print('Gauge not found with binary search times=', i0) if test_1 < test_2: if i0 == 0: phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 else: phase_1 = phase_1_pre phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 else: if i0 == 0: phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2 else: phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_2_pre phase_1_pre = phase_1 phase_2_pre = phase_2 vector_target = vector_target*cmath.exp(1j*phase) if show_phase==1: print('Phase=', phase) return vector_target def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): if index == None: index = np.argmax(np.abs(vector)) sign_pre = np.sign(np.imag(vector[index])) for phase in np.arange(0, 2*np.pi, precision): sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase))) if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre: break sign_pre = sign vector = vector*cmath.exp(1j*phase) if np.real(vector[index]) < 0: vector = -vector return vector # Module 6: Green functions def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): if np.array(hamiltonian).shape==(): dim = 1 else: dim = np.array(hamiltonian).shape[0] green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) return green def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) return green_nn_n def green_function_in_n(green_in_n_minus, h01, green_nn_n): green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) return green_in_n def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): h01 = np.array(h01) green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) return green_ni_n def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) return green_ii_n def transfer_matrix(fermi_energy, h00, h01): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transfer = np.zeros((2*dim, 2*dim), dtype=complex) transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) transfer[dim:2*dim, 0:dim] = np.identity(dim) transfer[dim:2*dim, dim:2*dim] = 0 return transfer def surface_green_function_of_lead(fermi_energy, h00, h01): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] fermi_energy = fermi_energy+1e-9*1j transfer = transfer_matrix(fermi_energy, h00, h01) eigenvalue, eigenvector = np.linalg.eig(transfer) ind = np.argsort(np.abs(eigenvalue)) temp = np.zeros((2*dim, 2*dim), dtype=complex) i0 = 0 for ind0 in ind: temp[:, i0] = eigenvector[:, ind0] i0 += 1 s1 = temp[dim:2*dim, 0:dim] s2 = temp[0:dim, 0:dim] s3 = temp[dim:2*dim, dim:2*dim] s4 = temp[0:dim, dim:2*dim] right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) return right_lead_surface, left_lead_surface def self_energy_of_lead(fermi_energy, h00, h01): h01 = np.array(h01) right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j return right_self_energy, left_self_energy, gamma_right, gamma_left def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): h_LC = np.array(h_LC) h_CR = np.array(h_CR) right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj()) left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j return right_self_energy, left_self_energy, gamma_right, gamma_left def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): h_lead_to_center = np.array(h_lead_to_center) right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center) gamma = (self_energy - self_energy.transpose().conj())*1j return self_energy, gamma def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): dim = np.array(center_hamiltonian).shape[0] right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) return green, gamma_right, gamma_left def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy) G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj())) return G_n # Module 7: density of states def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): green = guan.green_function(fermi_energy, hamiltonian, broadening) total_dos = -np.trace(np.imag(green))/pi return total_dos def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0): dim = np.array(fermi_energy_array).shape[0] total_dos_array = np.zeros(dim) i0 = 0 for fermi_energy in fermi_energy_array: if print_show == 1: print(fermi_energy) total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening) i0 += 1 return total_dos_array def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): # dim_hamiltonian = N1*N2*internal_degree green = guan.green_function(fermi_energy, hamiltonian, broadening) local_dos = np.zeros((N2, N1)) for i1 in range(N1): for i2 in range(N2): for i in range(internal_degree): local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi return local_dos def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): # dim_hamiltonian = N1*N2*N3*internal_degree green = guan.green_function(fermi_energy, hamiltonian, broadening) local_dos = np.zeros((N3, N2, N1)) for i1 in range(N1): for i2 in range(N2): for i3 in range(N3): for i in range(internal_degree): local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi return local_dos def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): # dim_h00 = N2*internal_degree local_dos = np.zeros((N2, N1)) green_11_1 = guan.green_function(fermi_energy, h00, broadening) for i1 in range(N1): green_nn_n_minus = green_11_1 green_in_n_minus = green_11_1 green_ni_n_minus = green_11_1 green_ii_n_minus = green_11_1 for i2_0 in range(i1): green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n if i1!=0: green_in_n_minus = green_nn_n green_ni_n_minus = green_nn_n green_ii_n_minus = green_nn_n for size_0 in range(N1-1-i1): green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) green_ii_n_minus = green_ii_n green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) green_in_n_minus = green_in_n green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) green_ni_n_minus = green_ni_n for i2 in range(N2): for i in range(internal_degree): local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi return local_dos def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): # dim_h00 = N2*N3*internal_degree local_dos = np.zeros((N3, N2, N1)) green_11_1 = guan.green_function(fermi_energy, h00, broadening) for i1 in range(N1): green_nn_n_minus = green_11_1 green_in_n_minus = green_11_1 green_ni_n_minus = green_11_1 green_ii_n_minus = green_11_1 for i1_0 in range(i1): green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n if i1!=0: green_in_n_minus = green_nn_n green_ni_n_minus = green_nn_n green_ii_n_minus = green_nn_n for size_0 in range(N1-1-i1): green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) green_ii_n_minus = green_ii_n green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) green_in_n_minus = green_in_n green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) green_ni_n_minus = green_ni_n for i2 in range(N2): for i3 in range(N3): for i in range(internal_degree): local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi return local_dos def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01): # dim_h00 = N2*internal_degree local_dos = np.zeros((N2, N1)) green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening) for i1 in range(N1): green_nn_n_minus = green_11_1 green_in_n_minus = green_11_1 green_ni_n_minus = green_11_1 green_ii_n_minus = green_11_1 for i2_0 in range(i1): if i2_0 == N1-1-1: green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening) else: green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n if i1!=0: green_in_n_minus = green_nn_n green_ni_n_minus = green_nn_n green_ii_n_minus = green_nn_n for size_0 in range(N1-1-i1): if size_0 == N1-1-i1-1: green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening) else: green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) green_ii_n_minus = green_ii_n green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) green_in_n_minus = green_in_n green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) green_ni_n_minus = green_ni_n for i2 in range(N2): for i in range(internal_degree): local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi return local_dos # Module 8: quantum transport ## conductance def calculate_conductance(fermi_energy, h00, h01, length=100): right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) for ix in range(length): if ix == 0: green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) green_0n_n = copy.deepcopy(green_nn_n) elif ix != length-1: green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) else: green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) return conductance def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0): dim = np.array(fermi_energy_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for fermi_energy in fermi_energy_array: if print_show == 1: print(fermi_energy) conductance_array[i0] = np.real(calculate_conductance(fermi_energy, h00, h01, length)) i0 += 1 return conductance_array def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) dim = np.array(h00).shape[0] for ix in range(length): disorder = np.zeros((dim, dim)) for dim0 in range(dim): if np.random.uniform(0, 1)<=disorder_concentration: disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) if ix == 0: green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy) green_0n_n = copy.deepcopy(green_nn_n) elif ix != length-1: green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) else: green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) return conductance def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0): dim = np.array(disorder_intensity_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for disorder_intensity in disorder_intensity_array: if print_show == 1: print(disorder_intensity) for times in range(calculation_times): conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) i0 += 1 conductance_array = conductance_array/calculation_times return conductance_array def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0): dim = np.array(disorder_concentration_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for disorder_concentration in disorder_concentration_array: if print_show == 1: print(disorder_concentration) for times in range(calculation_times): conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) i0 += 1 conductance_array = conductance_array/calculation_times return conductance_array def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0): dim = np.array(length_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for length in length_array: if print_show == 1: print(length) for times in range(calculation_times): conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) i0 += 1 conductance_array = conductance_array/calculation_times return conductance_array ## multi-terminal transmission def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): # ---------------- Geometry ---------------- # lead2 lead3 # lead1(L) lead4(R) # lead6 lead5 # h00 and h01 in leads h00_for_lead_1 = h00_for_lead_4 h00_for_lead_2 = h00_for_lead_2 h00_for_lead_3 = h00_for_lead_2 h00_for_lead_5 = h00_for_lead_2 h00_for_lead_6 = h00_for_lead_2 h00_for_lead_4 = h00_for_lead_4 h01_for_lead_1 = h01_for_lead_4.transpose().conj() h01_for_lead_2 = h01_for_lead_2 h01_for_lead_3 = h01_for_lead_2 h01_for_lead_4 = h01_for_lead_4 h01_for_lead_5 = h01_for_lead_2.transpose().conj() h01_for_lead_6 = h01_for_lead_2.transpose().conj() # hopping matrix from lead to center h_lead1_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) h_lead2_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) h_lead3_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) h_lead4_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) h_lead5_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) h_lead6_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) move = moving_step_of_leads # the step of leads 2,3,6,5 moving to center h_lead1_to_center[0:internal_degree*width, 0:internal_degree*width] = h01_for_lead_1.transpose().conj() h_lead4_to_center[0:internal_degree*width, internal_degree*width*(length-1):internal_degree*width*length] = h01_for_lead_4.transpose().conj() for i0 in range(width): begin_index = internal_degree*i0+0 end_index = internal_degree*i0+internal_degree h_lead2_to_center[begin_index:end_index, internal_degree*(width*(move+i0)+(width-1))+0:internal_degree*(width*(move+i0)+(width-1))+internal_degree] = h01_for_lead_2.transpose().conj()[begin_index:end_index, begin_index:end_index] h_lead3_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+(width-1))+0:internal_degree*(width*(length-move-1-i0)+(width-1))+internal_degree] = h01_for_lead_3.transpose().conj()[begin_index:end_index, begin_index:end_index] h_lead5_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+0)+0:internal_degree*(width*(length-move-1-i0)+0)+internal_degree] = h01_for_lead_5.transpose().conj()[begin_index:end_index, begin_index:end_index] h_lead6_to_center[begin_index:end_index, internal_degree*(width*(i0+move)+0)+0:internal_degree*(width*(i0+move)+0)+internal_degree] = h01_for_lead_6.transpose().conj()[begin_index:end_index, begin_index:end_index] # self energy self_energy1, gamma1 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_1, h01_for_lead_1, h_lead1_to_center) self_energy2, gamma2 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_2, h01_for_lead_1, h_lead2_to_center) self_energy3, gamma3 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_3, h01_for_lead_1, h_lead3_to_center) self_energy4, gamma4 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_4, h01_for_lead_1, h_lead4_to_center) self_energy5, gamma5 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_5, h01_for_lead_1, h_lead5_to_center) self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center) gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6] # Green function green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6) # Transmission transmission_matrix = np.zeros((6, 6), dtype=complex) channel_lead_4 = guan.calculate_conductance(fermi_energy, h00_for_lead_4, h01_for_lead_4, length=3) channel_lead_2 = guan.calculate_conductance(fermi_energy, h00_for_lead_2, h01_for_lead_2, length=3) for i0 in range(6): for j0 in range(6): if j0!=i0: transmission_matrix[i0, j0] = np.trace(np.dot(np.dot(np.dot(gamma_array[i0], green), gamma_array[j0]), green.transpose().conj())) for i0 in range(6): if i0 == 0 or i0 == 3: transmission_matrix[i0, i0] = channel_lead_4 else: transmission_matrix[i0, i0] = channel_lead_2 for i0 in range(6): for j0 in range(6): if j0!=i0: transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0] transmission_matrix = np.real(transmission_matrix) return transmission_matrix ## scattering matrix def if_active_channel(k_of_channel): if np.abs(np.imag(k_of_channel))<1e-6: if_active = 1 else: if_active = 0 return if_active def get_k_and_velocity_of_channel(fermi_energy, h00, h01): if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transfer = guan.transfer_matrix(fermi_energy, h00, h01) eigenvalue, eigenvector = np.linalg.eig(transfer) k_of_channel = np.log(eigenvalue)/1j ind = np.argsort(np.real(k_of_channel)) k_of_channel = np.sort(k_of_channel) temp = np.zeros((2*dim, 2*dim), dtype=complex) temp2 = np.zeros((2*dim), dtype=complex) i0 = 0 for ind0 in ind: temp[:, i0] = eigenvector[:, ind0] temp2[i0] = eigenvalue[ind0] i0 += 1 eigenvalue = copy.deepcopy(temp2) temp = temp[0:dim, :] factor = np.zeros(2*dim, dtype=complex) for dim0 in range(dim): factor = factor+np.square(np.abs(temp[dim0, :])) for dim0 in range(2*dim): temp[:, dim0] = temp[:, dim0]/np.sqrt(factor[dim0]) velocity_of_channel = np.zeros((2*dim), dtype=complex) for dim0 in range(2*dim): velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] velocity_of_channel = -2*np.imag(velocity_of_channel) eigenvector = copy.deepcopy(temp) return k_of_channel, velocity_of_channel, eigenvalue, eigenvector def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] k_of_channel, velocity_of_channel, eigenvalue, eigenvector = get_k_and_velocity_of_channel(fermi_energy, h00, h01) ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0 k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex) velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex) lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex) u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex) for dim0 in range(2*dim): if_active = if_active_channel(k_of_channel[dim0]) if if_active_channel(k_of_channel[dim0]) == 1: direction = np.sign(velocity_of_channel[dim0]) else: direction = np.sign(np.imag(k_of_channel[dim0])) if direction == 1: if if_active == 1: # right-moving active channel k_right[ind_right_active] = k_of_channel[dim0] velocity_right[ind_right_active] = velocity_of_channel[dim0] lambda_right[ind_right_active] = eigenvalue[dim0] u_right[:, ind_right_active] = eigenvector[:, dim0] ind_right_active += 1 else: # right-moving evanescent channel k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0] velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0] lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0] u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0] ind_right_evanescent += 1 else: if if_active == 1: # left-moving active channel k_left[ind_left_active] = k_of_channel[dim0] velocity_left[ind_left_active] = velocity_of_channel[dim0] lambda_left[ind_left_active] = eigenvalue[dim0] u_left[:, ind_left_active] = eigenvector[:, dim0] ind_left_active += 1 else: # left-moving evanescent channel k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0] velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0] lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0] u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0] ind_left_evanescent += 1 lambda_matrix_right = np.diag(lambda_right) lambda_matrix_left = np.diag(lambda_left) f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) right_self_energy = np.dot(h01, f_right) left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) for i0 in range(length): if i0 == 0: green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) green_00_n = copy.deepcopy(green_nn_n) green_0n_n = copy.deepcopy(green_nn_n) green_n0_n = copy.deepcopy(green_nn_n) elif i0 != length-1: green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) else: green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n) temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right) reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) for dim0 in range(dim): for dim1 in range(dim): if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1]) if if_active == 1: transmission_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] reflection_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] else: transmission_matrix[dim0, dim1] = 0 reflection_matrix[dim0, dim1] = 0 sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) for sum_of_tran_refl in sum_of_tran_refl_array: if sum_of_tran_refl > 1.001: print('Error Alert: scattering matrix is not normalized!') return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt'): if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = calculate_scattering_matrix(fermi_energy, h00, h01, length) if print_show == 1: print('\nActive channel (left or right) = ', ind_right_active) print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n') print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active])) print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n') print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active])) print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n') print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n') print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n') if write_file == 1: with open(filename+'.'+format, 'w') as f: f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n') f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n') f.write('Channel K Velocity\n') for ind0 in range(ind_right_active): f.write(' '+str(ind0 + 1) + ' | '+str(np.real(k_right[ind0]))+' ' + str(np.real(velocity_right[ind0]))+'\n') f.write('\n') for ind0 in range(ind_right_active): f.write(' -' + str(ind0 + 1) + ' | ' + str(np.real(k_left[ind0])) + ' ' + str(np.real(velocity_left[ind0])) + '\n') f.write('\nScattering matrix:\n ') for ind0 in range(ind_right_active): f.write(str(ind0+1)+' ') f.write('\n') for ind1 in range(ind_right_active): f.write(' '+str(ind1+1)+' ') for ind2 in range(ind_right_active): f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+' ') f.write('\n') f.write('\n') for ind1 in range(ind_right_active): f.write(' -'+str(ind1+1)+' ') for ind2 in range(ind_right_active): f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+' ') f.write('\n') f.write('\n') f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n') f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n') # Module 9: topological invariant def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0): if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] delta = 2*pi/precision chern_number = np.zeros(dim, dtype=complex) for kx in np.arange(-pi, pi, delta): if print_show == 1: print(kx) for ky in np.arange(-pi, pi, delta): H = hamiltonian_function(kx, ky) vector = guan.calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta, ky) vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta) vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) chern_number[i] = chern_number[i] + F chern_number = chern_number/(2*pi*1j) return chern_number def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0): delta = 2*pi/precision_of_plaquettes chern_number = 0 for kx in np.arange(-pi, pi, delta): if print_show == 1: print(kx) for ky in np.arange(-pi, pi, delta): vector_array = [] # line_1 for i0 in range(precision_of_Wilson_loop+1): H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_2 for i0 in range(precision_of_Wilson_loop): H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1)) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_3 for i0 in range(precision_of_Wilson_loop): H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_4 for i0 in range(precision_of_Wilson_loop-1): H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1)) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) Wilson_loop = 1 for i0 in range(len(vector_array)-1): Wilson_loop = Wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1]) Wilson_loop = Wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0]) arg = np.log(np.diagonal(Wilson_loop))/1j chern_number = chern_number + arg chern_number = chern_number/(2*pi) return chern_number def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] chern_number = np.zeros(dim, dtype=complex) L1 = 4*sqrt(3)*pi/9/a L2 = 2*sqrt(3)*pi/9/a L3 = 2*pi/3/a delta1 = 2*L1/precision delta3 = 2*L3/precision for kx in np.arange(-L1, L1, delta1): if print_show == 1: print(kx) for ky in np.arange(-L3, L3, delta3): if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*tan(pi/3)<=ky<=(L1-kx)*tan(pi/3)) or (kx<-L2 and -(kx-(-L1))*tan(pi/3)<=ky<=(kx-(-L1))*tan(pi/3)): H = hamiltonian_function(kx, ky) vector = guan.calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta1, ky) vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta3) vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3) vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) chern_number[i] = chern_number[i] + F chern_number = chern_number/(2*pi*1j) return chern_number def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100, print_show=0): k_array = np.linspace(k_min, k_max, precision) dim = np.array(hamiltonian_function(0)).shape[0] wilson_loop_array = np.ones(dim, dtype=complex) for i in range(dim): if print_show == 1: print(i) eigenvector_array = [] for k in k_array: eigenvector = guan.calculate_eigenvector(hamiltonian_function(k)) if k != k_max: eigenvector_array.append(eigenvector[:, i]) else: eigenvector_array.append(eigenvector_array[0]) for i0 in range(precision-1): F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) return wilson_loop_array # Module 10: read and write def read_one_dimensional_data(filename='a', format='txt'): f = open(filename+'.'+format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) for row in row_list: column = np.array(row.split()) if column.shape[0] != 0: x_array = np.append(x_array, [float(column[0])], axis=0) y_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): y_row[dim0] = float(column[dim0+1]) if np.array(y_array).shape[0] == 0: y_array = [y_row] else: y_array = np.append(y_array, [y_row], axis=0) return x_array, y_array def read_two_dimensional_data(filename='a', format='txt'): f = open(filename+'.'+format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) matrix = np.array([]) for i0 in range(row_list.shape[0]): column = np.array(row_list[i0].split()) if i0 == 0: x_str = column[1::] x_array = np.zeros(x_str.shape[0]) for i00 in range(x_str.shape[0]): x_array[i00] = float(x_str[i00]) elif column.shape[0] != 0: y_array = np.append(y_array, [float(column[0])], axis=0) matrix_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): matrix_row[dim0] = float(column[dim0+1]) if np.array(matrix).shape[0] == 0: matrix = [matrix_row] else: matrix = np.append(matrix, [matrix_row], axis=0) return x_array, y_array, matrix def write_one_dimensional_data(x_array, y_array, filename='a', format='txt'): x_array = np.array(x_array) y_array = np.array(y_array) with open(filename+'.'+format, 'w') as f: i0 = 0 for x0 in x_array: f.write(str(x0)+' ') if len(y_array.shape) == 1: f.write(str(y_array[i0])+'\n') elif len(y_array.shape) == 2: for j0 in range(y_array.shape[1]): f.write(str(y_array[i0, j0])+' ') f.write('\n') i0 += 1 def write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt'): x_array = np.array(x_array) y_array = np.array(y_array) matrix = np.array(matrix) with open(filename+'.'+format, 'w') as f: f.write('0 ') for x0 in x_array: f.write(str(x0)+' ') f.write('\n') i0 = 0 for y0 in y_array: f.write(str(y0)) j0 = 0 for x0 in x_array: f.write(' '+str(matrix[i0, j0])+' ') j0 += 1 f.write('\n') i0 += 1 # Module 11: plot figures def plot(x_array, y_array, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300, type='', y_min=None, y_max=None, linewidth=None, markersize=None): import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.20, left=0.18) ax.plot(x_array, y_array, type, linewidth=linewidth, markersize=markersize) ax.grid() ax.set_title(title, fontsize=20, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y_min=min(y_array) if y_max==None: y_max=max(y_array) ax.set_ylim(y_min, y_max) ax.tick_params(labelsize=20) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100): import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator matrix = np.array(matrix) fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) plt.subplots_adjust(bottom=0.1, right=0.65) x_array, y_array = np.meshgrid(x_array, y_array) if len(matrix.shape) == 2: surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False) elif len(matrix.shape) == 3: for i0 in range(matrix.shape[2]): surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_title(title, fontsize=20, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman') ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman') ax.zaxis.set_major_locator(LinearLocator(5)) ax.zaxis.set_major_formatter('{x:.2f}') if z_min!=None or z_max!=None: if z_min==None: z_min=matrix.min() if z_max==None: z_max=matrix.max() ax.set_zlim(z_min, z_max) ax.tick_params(labelsize=15) labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.80, 0.15, 0.05, 0.75]) cbar = fig.colorbar(surf, cax=cax) cbar.ax.tick_params(labelsize=15) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300): import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16) x_array, y_array = np.meshgrid(x_array, y_array) contour = ax.contourf(x_array,y_array,matrix,cmap='jet') ax.set_title(title, fontsize=20, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman') ax.tick_params(labelsize=15) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.78, 0.17, 0.08, 0.71]) cbar = fig.colorbar(contour, cax=cax) cbar.ax.tick_params(labelsize=15) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+'.'+format, dpi=dpi) if show == 1: plt.show() plt.close('all') # Module 12: others ## download def download_with_scihub(address=None, num=1): from bs4 import BeautifulSoup import re import requests import os if num==1 and address!=None: address_array = [address] else: address_array = [] for i in range(num): address = input('\nInput:') address_array.append(address) for address in address_array: r = requests.post('https://sci-hub.st/', data={'request': address}) print('\nResponse:', r) print('Address:', r.url) soup = BeautifulSoup(r.text, features='lxml') pdf_URL = soup.iframe['src'] if re.search(re.compile('^https:'), pdf_URL): pass else: pdf_URL = 'https:'+pdf_URL print('PDF address:', pdf_URL) name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::] print('PDF name:', name) print('Directory:', os.getcwd()) print('\nDownloading...') r = requests.get(pdf_URL, stream=True) with open(name, 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) print('Completed!\n') if num != 1: print('All completed!\n') ## audio def str_to_audio(str='hello world', rate=125, voice=1, read=1, save=0, print_text=0): import pyttsx3 if print_text==1: print(str) engine = pyttsx3.init() voices = engine.getProperty('voices') engine.setProperty('voice', voices[voice].id) engine.setProperty("rate", rate) if save==1: engine.save_to_file(str, 'str.mp3') engine.runAndWait() print('MP3 file saved!') if read==1: engine.say(str) engine.runAndWait() def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, print_text=0): import pyttsx3 f = open(txt_path, 'r', encoding ='utf-8') text = f.read() if print_text==1: print(text) engine = pyttsx3.init() voices = engine.getProperty('voices') engine.setProperty('voice', voices[voice].id) engine.setProperty("rate", rate) if save==1: import re file_name = re.split('[/,\\\]', txt_path)[-1][:-4] engine.save_to_file(text, file_name+'.mp3') engine.runAndWait() print('MP3 file saved!') if read==1: engine.say(text) engine.runAndWait() def pdf_to_text(pdf_path): from pdfminer.pdfparser import PDFParser, PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import PDFPageAggregator from pdfminer.layout import LAParams, LTTextBox from pdfminer.pdfinterp import PDFTextExtractionNotAllowed import logging logging.Logger.propagate = False logging.getLogger().setLevel(logging.ERROR) praser = PDFParser(open(pdf_path, 'rb')) doc = PDFDocument() praser.set_document(doc) doc.set_parser(praser) doc.initialize() if not doc.is_extractable: raise PDFTextExtractionNotAllowed else: rsrcmgr = PDFResourceManager() laparams = LAParams() device = PDFPageAggregator(rsrcmgr, laparams=laparams) interpreter = PDFPageInterpreter(rsrcmgr, device) content = '' for page in doc.get_pages(): interpreter.process_page(page) layout = device.get_result() for x in layout: if isinstance(x, LTTextBox): content = content + x.get_text().strip() return content def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, print_text=0): import pyttsx3 text = guan.pdf_to_text(pdf_path) text = text.replace('\n', ' ') if print_text==1: print(text) engine = pyttsx3.init() voices = engine.getProperty('voices') engine.setProperty('voice', voices[voice].id) engine.setProperty("rate", rate) if save==1: import re file_name = re.split('[/,\\\]', pdf_path)[-1][:-4] engine.save_to_file(text, file_name+'.mp3') engine.runAndWait() print('MP3 file saved!') if read==1: engine.say(text) engine.runAndWait()