# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. GitHub link: https://github.com/guanjihuan/py.guanjihuan.com. # The current version is guan-0.1.10, updated on November 02, 2023. # Installation: pip install --upgrade guan # Modules: # # Module 1: basic functions # # Module 2: Fourier transform # # Module 3: Hamiltonian of finite size systems # # Module 4: Hamiltonian of models in the reciprocal space # # Module 5: band structures and wave functions # # Module 6: Green functions # # Module 7: density of states # # Module 8: quantum transport # # Module 9: topological invariant # # Module 10: plot figures # # Module 11: read and write # # Module 12: file processing # # Module 13: data processing # Module 1: basic functions # 测试 def test(): print('\nSuccess in the installation of Guan package!\n') import guan guan.statistics_of_guan_package() # 泡利矩阵 def sigma_0(): import numpy as np import guan guan.statistics_of_guan_package() return np.eye(2) def sigma_x(): import numpy as np import guan guan.statistics_of_guan_package() return np.array([[0, 1],[1, 0]]) def sigma_y(): import numpy as np import guan guan.statistics_of_guan_package() return np.array([[0, -1j],[1j, 0]]) def sigma_z(): import numpy as np import guan guan.statistics_of_guan_package() return np.array([[1, 0],[0, -1]]) # 泡利矩阵的张量积 def sigma_00(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_0(), guan.sigma_0()) def sigma_0x(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_0(), guan.sigma_x()) def sigma_0y(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_0(), guan.sigma_y()) def sigma_0z(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_0(), guan.sigma_z()) def sigma_x0(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_x(), guan.sigma_0()) def sigma_xx(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_x(), guan.sigma_x()) def sigma_xy(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_x(), guan.sigma_y()) def sigma_xz(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_x(), guan.sigma_z()) def sigma_y0(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_y(), guan.sigma_0()) def sigma_yx(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_y(), guan.sigma_x()) def sigma_yy(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_y(), guan.sigma_y()) def sigma_yz(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_y(), guan.sigma_z()) def sigma_z0(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_z(), guan.sigma_0()) def sigma_zx(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_z(), guan.sigma_x()) def sigma_zy(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_z(), guan.sigma_y()) def sigma_zz(): import numpy as np import guan guan.statistics_of_guan_package() return np.kron(guan.sigma_z(), guan.sigma_z()) # Module 2: Fourier_transform # 通过元胞和跃迁项得到一维的哈密顿量(需要输入k值) def one_dimensional_fourier_transform(k, unit_cell, hopping): import numpy as np import cmath unit_cell = np.array(unit_cell) hopping = np.array(hopping) hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) import guan guan.statistics_of_guan_package() return hamiltonian # 通过元胞和跃迁项得到二维方格子的哈密顿量(需要输入k值) def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): import numpy as np import cmath unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) import guan guan.statistics_of_guan_package() return hamiltonian # 通过元胞和跃迁项得到三维立方格子的哈密顿量(需要输入k值) def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): import numpy as np import cmath unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) import guan guan.statistics_of_guan_package() return hamiltonian # 通过元胞和跃迁项得到一维的哈密顿量(返回的哈密顿量为携带k的函数) def one_dimensional_fourier_transform_with_k(unit_cell, hopping): import functools import guan hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping) guan.statistics_of_guan_package() return hamiltonian_function # 通过元胞和跃迁项得到二维方格子的哈密顿量(返回的哈密顿量为携带k的函数) def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2): import functools import guan hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2) guan.statistics_of_guan_package() return hamiltonian_function # 通过元胞和跃迁项得到三维立方格子的哈密顿量(返回的哈密顿量为携带k的函数) def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3): import functools import guan hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3) guan.statistics_of_guan_package() return hamiltonian_function # 由实空间格矢得到倒空间格矢(一维) def calculate_one_dimensional_reciprocal_lattice_vector(a1): import numpy as np b1 = 2*np.pi/a1 import guan guan.statistics_of_guan_package() return b1 # 由实空间格矢得到倒空间格矢(二维) def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): import numpy as np a1 = np.array(a1) a2 = np.array(a2) a1 = np.append(a1, 0) a2 = np.append(a2, 0) a3 = np.array([0, 0, 1]) b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b1 = np.delete(b1, 2) b2 = np.delete(b2, 2) import guan guan.statistics_of_guan_package() return b1, b2 # 由实空间格矢得到倒空间格矢(三维) def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): import numpy as np a1 = np.array(a1) a2 = np.array(a2) a3 = np.array(a3) b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3)) import guan guan.statistics_of_guan_package() return b1, b2, b3 # 由实空间格矢得到倒空间格矢(一维),这里为符号运算 def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): import sympy b1 = 2*sympy.pi/a1 import guan guan.statistics_of_guan_package() return b1 # 由实空间格矢得到倒空间格矢(二维),这里为符号运算 def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): import sympy a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0]) a3 = sympy.Matrix(1, 3, [0, 0, 1]) cross_a2_a3 = a2.cross(a3) cross_a3_a1 = a3.cross(a1) b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b1 = sympy.Matrix(1, 2, [b1[0], b1[1]]) b2 = sympy.Matrix(1, 2, [b2[0], b2[1]]) import guan guan.statistics_of_guan_package() return b1, b2 # 由实空间格矢得到倒空间格矢(三维),这里为符号运算 def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): import sympy cross_a2_a3 = a2.cross(a3) cross_a3_a1 = a3.cross(a1) cross_a1_a2 = a1.cross(a2) b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3) import guan guan.statistics_of_guan_package() return b1, b2, b3 # Module 3: Hamiltonian of finite size systems # 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件) def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): import numpy as np on_site = np.array(on_site) hopping = np.array(hopping) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) for i0 in range(N): hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site for i0 in range(N-1): hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() if period == 1: hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() import guan guan.statistics_of_guan_package() return hamiltonian # 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): import numpy as np on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() if period_1 == 1: for i2 in range(N2): hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() import guan guan.statistics_of_guan_package() return hamiltonian # 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): import numpy as np on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() for i1 in range(N1): for i2 in range(N2): for i3 in range(N3-1): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() if period_1 == 1: for i2 in range(N2): for i3 in range(N3): hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() if period_3 == 1: for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() import guan guan.statistics_of_guan_package() return hamiltonian # 构建有限尺寸的SSH模型哈密顿量 def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): import numpy as np hamiltonian = np.zeros((2*N, 2*N)) for i in range(N): hamiltonian[i*2+0, i*2+0] = onsite_1 hamiltonian[i*2+1, i*2+1] = onsite_2 hamiltonian[i*2+0, i*2+1] = v hamiltonian[i*2+1, i*2+0] = v for i in range(N-1): hamiltonian[i*2+1, (i+1)*2+0] = w hamiltonian[(i+1)*2+0, i*2+1] = w if period==1: hamiltonian[0, 2*N-1] = w hamiltonian[2*N-1, 0] = w import guan guan.statistics_of_guan_package() return hamiltonian # 获取Zigzag边的石墨烯条带的元胞间跃迁 def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): import numpy as np hopping = np.zeros((4*N, 4*N), dtype=complex) for i0 in range(N): hopping[4*i0+0, 4*i0+0] = eta hopping[4*i0+1, 4*i0+1] = eta hopping[4*i0+2, 4*i0+2] = eta hopping[4*i0+3, 4*i0+3] = eta hopping[4*i0+1, 4*i0+0] = 1 hopping[4*i0+2, 4*i0+3] = 1 import guan guan.statistics_of_guan_package() return hopping # 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件) def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): import numpy as np import guan on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4) hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1) hopping_2 = np.zeros((4, 4), dtype=complex) hopping_2[3, 0] = 1 hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) guan.statistics_of_guan_package() return hamiltonian # 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数) def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): import numpy as np constant = -np.sqrt(3)/2 h00 = np.zeros((2, 2), dtype=complex) h00[0, 0] = staggered_potential h00[1, 1] = -staggered_potential h00[0, 1] = -1j*constant*t*np.sin(qy) h00[1, 0] = 1j*constant*t*np.sin(qy) h01 = np.zeros((2, 2), dtype=complex) h01[0, 0] = eta h01[1, 1] = eta if valley_index == 0: h01[0, 1] = constant*t*(-1j/2) h01[1, 0] = constant*t*(-1j/2) else: h01[0, 1] = constant*t*(1j/2) h01[1, 0] = constant*t*(1j/2) import guan guan.statistics_of_guan_package() return h00, h01 # 获取BHZ模型的在位能和跃迁项 def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): import numpy as np E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((4, 4), dtype=complex) H1 = np.zeros((4, 4), dtype=complex) H2 = np.zeros((4, 4), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H0[2, 2] = E_s H0[3, 3] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[2, 2] = V_ss H1[3, 3] = V_pp H1[0, 1] = V_sp H1[1, 0] = -np.conj(V_sp) H1[2, 3] = np.conj(V_sp) H1[3, 2] = -V_sp H2[0, 0] = V_ss H2[1, 1] = V_pp H2[2, 2] = V_ss H2[3, 3] = V_pp H2[0, 1] = 1j*V_sp H2[1, 0] = 1j*np.conj(V_sp) H2[2, 3] = -1j*np.conj(V_sp) H2[3, 2] = -1j*V_sp import guan guan.statistics_of_guan_package() return H0, H1, H2 # 获取半个BHZ模型的在位能和跃迁项(自旋向上) def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): import numpy as np E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((2, 2), dtype=complex) H1 = np.zeros((2, 2), dtype=complex) H2 = np.zeros((2, 2), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[0, 1] = V_sp H1[1, 0] = -np.conj(V_sp) H2[0, 0] = V_ss H2[1, 1] = V_pp H2[0, 1] = 1j*V_sp H2[1, 0] = 1j*np.conj(V_sp) import guan guan.statistics_of_guan_package() return H0, H1, H2 # 获取半个BHZ模型的在位能和跃迁项(自旋向下) def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): import numpy as np E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((2, 2), dtype=complex) H1 = np.zeros((2, 2), dtype=complex) H2 = np.zeros((2, 2), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[0, 1] = np.conj(V_sp) H1[1, 0] = -V_sp H2[0, 0] = V_ss H2[1, 1] = V_pp H2[0, 1] = -1j*np.conj(V_sp) H2[1, 0] = -1j*V_sp import guan guan.statistics_of_guan_package() return H0, H1, H2 # Module 4: Hamiltonian of models in the reciprocal space # 一维链的哈密顿量 def hamiltonian_of_simple_chain(k): import guan hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) guan.statistics_of_guan_package() return hamiltonian # 二维方格子的哈密顿量 def hamiltonian_of_square_lattice(k1, k2): import guan hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) guan.statistics_of_guan_package() return hamiltonian # 准一维方格子条带的哈密顿量 def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): import numpy as np import guan h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells for i in range(N-1): h00[i, i+1] = 1 h00[i+1, i] = 1 if period == 1: h00[N-1, 0] = 1 h00[0, N-1] = 1 for i in range(N): h01[i, i] = 1 hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) guan.statistics_of_guan_package() return hamiltonian # 三维立方格子的哈密顿量 def hamiltonian_of_cubic_lattice(k1, k2, k3): import guan hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) guan.statistics_of_guan_package() return hamiltonian # SSH模型的哈密顿量 def hamiltonian_of_ssh_model(k, v=0.6, w=1): import numpy as np import cmath hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0,1] = v+w*cmath.exp(-1j*k) hamiltonian[1,0] = v+w*cmath.exp(1j*k) import guan guan.statistics_of_guan_package() return hamiltonian # 石墨烯的哈密顿量 def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): import numpy as np import cmath import math if a == 'default': a = 1/math.sqrt(3) h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h0[0, 0] = staggered_potential h0[1, 1] = -staggered_potential h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() hamiltonian = h0 + h1 import guan guan.statistics_of_guan_package() return hamiltonian # 石墨烯有效模型的哈密顿量 def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0): import numpy as np hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 0] = staggered_potential hamiltonian[1, 1] = -staggered_potential constant = -np.sqrt(3)/2 if valley_index == 0: hamiltonian[0, 1] = constant*t*(qx-1j*qy) hamiltonian[1, 0] = constant*t*(qx+1j*qy) else: hamiltonian[0, 1] = constant*t*(-qx-1j*qy) hamiltonian[1, 0] = constant*t*(-qx+1j*qy) import guan guan.statistics_of_guan_package() return hamiltonian # 石墨烯有效模型离散化后的哈密顿量 def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0): import numpy as np hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 0] = staggered_potential hamiltonian[1, 1] = -staggered_potential constant = -np.sqrt(3)/2 if valley_index == 0: hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy)) hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy)) else: hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy)) hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy)) import guan guan.statistics_of_guan_package() return hamiltonian # 准一维Zigzag边石墨烯条带的哈密顿量 def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): import numpy as np import guan h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t h00[i*4+1, i*4+0] = t h00[i*4+1, i*4+2] = t h00[i*4+2, i*4+1] = t h00[i*4+2, i*4+3] = t h00[i*4+3, i*4+2] = t for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t h00[(i+1)*4+0, i*4+3] = t if period == 1: h00[(N-1)*4+3, 0] = t h00[0, (N-1)*4+3] = t for i in range(N): h01[i*4+1, i*4+0] = t h01[i*4+2, i*4+3] = t hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) guan.statistics_of_guan_package() return hamiltonian # Haldane模型的哈密顿量 def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'): import numpy as np import cmath import math if phi == 'default': phi=math.pi/4 if a == 'default': a=1/math.sqrt(3) h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping h0[0, 0] = M h0[1, 1] = -M h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) hamiltonian = h0 + h1 + h2 + h2.transpose().conj() import guan guan.statistics_of_guan_package() return hamiltonian # 准一维Haldane模型条带的哈密顿量 def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0): import numpy as np import cmath import math if phi == 'default': phi=math.pi/4 h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t1 h00[i*4+1, i*4+0] = t1 h00[i*4+1, i*4+2] = t1 h00[i*4+2, i*4+1] = t1 h00[i*4+2, i*4+3] = t1 h00[i*4+3, i*4+2] = t1 h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi) h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj() h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi) h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj() for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t1 h00[(i+1)*4+0, i*4+3] = t1 h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi) h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() if period == 1: h00[(N-1)*4+3, 0] = t1 h00[0, (N-1)*4+3] = t1 h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi) h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj() h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi) h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj() for i in range(N): h01[i*4+1, i*4+0] = t1 h01[i*4+2, i*4+3] = t1 h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi) h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi) h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi) h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi) h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi) h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi) if i != 0: h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi) for i in range(N-1): h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) import guan guan.statistics_of_guan_package() return hamiltonian # 一个量子反常霍尔效应的哈密顿量 def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): import numpy as np import math hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2) hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2) hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2) hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) import guan guan.statistics_of_guan_package() return hamiltonian # BHZ模型的哈密顿量 def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): import numpy as np import math hamiltonian = np.zeros((4, 4), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = np.conj(d1_d2) hamiltonian[1, 0] = d1_d2 hamiltonian[2, 2] = varepsilon+d3 hamiltonian[3, 3] = varepsilon-d3 hamiltonian[2, 3] = -d1_d2 hamiltonian[3, 2] = -np.conj(d1_d2) import guan guan.statistics_of_guan_package() return hamiltonian # 半BHZ模型的哈密顿量(自旋向上) def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): import numpy as np import math hamiltonian = np.zeros((2, 2), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = np.conj(d1_d2) hamiltonian[1, 0] = d1_d2 import guan guan.statistics_of_guan_package() return hamiltonian # 半BHZ模型的哈密顿量(自旋向下) def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): import numpy as np import math hamiltonian = np.zeros((2, 2), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = -d1_d2 hamiltonian[1, 0] = -np.conj(d1_d2) import guan guan.statistics_of_guan_package() return hamiltonian # BBH模型的哈密顿量 def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): import numpy as np import cmath # label of atoms in a unit cell # (2) —— (0) # | | # (1) —— (3) hamiltonian = np.zeros((4, 4), dtype=complex) hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx) hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx) hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky) hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky) hamiltonian[2, 0] = np.conj(hamiltonian[0, 2]) hamiltonian[3, 1] = np.conj(hamiltonian[1, 3]) hamiltonian[3, 0] = np.conj(hamiltonian[0, 3]) hamiltonian[2, 1] = np.conj(hamiltonian[1, 2]) import guan guan.statistics_of_guan_package() return hamiltonian # Kagome模型的哈密顿量 def hamiltonian_of_kagome_lattice(kx, ky, t=1): import numpy as np import math k1_dot_a1 = kx k2_dot_a2 = kx/2+ky*math.sqrt(3)/2 k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2 hamiltonian = np.zeros((3, 3), dtype=complex) hamiltonian[0, 1] = 2*math.cos(k1_dot_a1) hamiltonian[0, 2] = 2*math.cos(k2_dot_a2) hamiltonian[1, 2] = 2*math.cos(k3_dot_a3) hamiltonian = hamiltonian + hamiltonian.transpose().conj() hamiltonian = -t*hamiltonian import guan guan.statistics_of_guan_package() return hamiltonian # Module 5: band structures and wave functions # 计算哈密顿量的本征值 def calculate_eigenvalue(hamiltonian): import numpy as np if np.array(hamiltonian).shape==(): eigenvalue = np.real(hamiltonian) else: eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) import guan guan.statistics_of_guan_package() return eigenvalue # 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组 def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): import numpy as np dim_x = np.array(x_array).shape[0] i0 = 0 if np.array(hamiltonian_function(0)).shape==(): eigenvalue_array = np.zeros((dim_x, 1)) for x0 in x_array: hamiltonian = hamiltonian_function(x0) eigenvalue_array[i0, 0] = np.real(hamiltonian) i0 += 1 else: dim = np.array(hamiltonian_function(0)).shape[0] eigenvalue_array = np.zeros((dim_x, dim)) for x0 in x_array: if print_show==1: print(x0) hamiltonian = hamiltonian_function(x0) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue_array[i0, :] = eigenvalue i0 += 1 import guan guan.statistics_of_guan_package() return eigenvalue_array # 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组 def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0): import numpy as np dim_x = np.array(x_array).shape[0] dim_y = np.array(y_array).shape[0] if np.array(hamiltonian_function(0,0)).shape==(): eigenvalue_array = np.zeros((dim_y, dim_x, 1)) i0 = 0 for y0 in y_array: j0 = 0 for x0 in x_array: hamiltonian = hamiltonian_function(x0, y0) eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) j0 += 1 i0 += 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] eigenvalue_array = np.zeros((dim_y, dim_x, dim)) i0 = 0 for y0 in y_array: j0 = 0 if print_show==1: print(y0) for x0 in x_array: if print_show_more==1: print(x0) hamiltonian = hamiltonian_function(x0, y0) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue_array[i0, j0, :] = eigenvalue j0 += 1 i0 += 1 import guan guan.statistics_of_guan_package() return eigenvalue_array # 计算哈密顿量的本征矢 def calculate_eigenvector(hamiltonian): import numpy as np eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) import guan guan.statistics_of_guan_package() return eigenvector # 通过二分查找的方法获取和相邻波函数一样规范的波函数 def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6): import numpy as np import cmath phase_1_pre = 0 phase_2_pre = np.pi for i0 in range(n_test): test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref)) test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref)) if test_1 < precision: phase = phase_1_pre if show_times==1: print('Binary search times=', i0) break if i0 == n_test-1: phase = phase_1_pre if show_error==1: print('Gauge not found with binary search times=', i0) if test_1 < test_2: if i0 == 0: phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 else: phase_1 = phase_1_pre phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 else: if i0 == 0: phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2 else: phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 phase_2 = phase_2_pre phase_1_pre = phase_1 phase_2_pre = phase_2 vector_target = vector_target*cmath.exp(1j*phase) if show_phase==1: print('Phase=', phase) import guan guan.statistics_of_guan_package() return vector_target # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数 def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): import numpy as np import cmath vector = np.array(vector) if index == None: index = np.argmax(np.abs(vector)) sign_pre = np.sign(np.imag(vector[index])) for phase in np.arange(0, 2*np.pi, precision): sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase))) if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre: break sign_pre = sign vector = vector*cmath.exp(1j*phase) if np.real(vector[index]) < 0: vector = -vector import guan guan.statistics_of_guan_package() return vector # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量) def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005): import numpy as np import guan vector_sum = 0 Num_k = np.array(vector_array).shape[0] for i0 in range(Num_k): vector_sum += np.abs(vector_array[i0]) index = np.argmax(np.abs(vector_sum)) for i0 in range(Num_k): vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index) guan.statistics_of_guan_package() return vector_array # 旋转两个简并的波函数(说明:参数比较多,效率不高) def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0): import numpy as np import math import cmath vector1 = np.array(vector1) vector2 = np.array(vector2) if index1 == None: index1 = np.argmax(np.abs(vector1)) if index2 == None: index2 = np.argmax(np.abs(vector2)) if np.abs(vector1[index2])>criterion or np.abs(vector2[index1])>criterion: for theta in np.arange(0, 2*math.pi, precision): if show_theta==1: print(theta) for phi1 in np.arange(0, 2*math.pi, precision): for phi2 in np.arange(0, 2*math.pi, precision): vector1_test = cmath.exp(1j*phi1)*vector1*math.cos(theta)+cmath.exp(1j*phi2)*vector2*math.sin(theta) vector2_test = -cmath.exp(-1j*phi2)*vector1*math.sin(theta)+cmath.exp(-1j*phi1)*vector2*math.cos(theta) if np.abs(vector1_test[index2]) 1.001: print('Error Alert: scattering matrix is not normalized!') guan.statistics_of_guan_package() return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active # 从散射矩阵中,获取散射矩阵的信息 def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active): import numpy as np if np.array(transmission_matrix).shape==(): dim = 1 else: dim = np.array(transmission_matrix).shape[0] number_of_active_channels = ind_right_active number_of_evanescent_channels = dim-ind_right_active k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active]) k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active]) velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active]) velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active]) transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])) reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])) total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) import guan guan.statistics_of_guan_package() return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels # 已知h00和h01,计算散射矩阵并获得散射矩阵的信息 def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100): import guan transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) guan.statistics_of_guan_package() return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels # 从散射矩阵中,打印出散射矩阵的信息 def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'): if print_show == 1: print('\nActive channel (left or right) = ', number_of_active_channels) print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n') print('K of right-moving active channels:\n', k_of_right_moving_active_channels) print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n') print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels) print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n') print('Transmission matrix:\n', transmission_matrix_for_active_channels) print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n') print('Total transmission of channels:\n', total_transmission_of_channels) print('Total conductance = ', total_conductance, '\n') print('Total reflection of channels:\n', total_reflection_of_channels) print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n') if write_file == 1: with open(filename+file_format, 'w') as f: f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n') f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n') f.write('Channel K Velocity\n') for ind0 in range(number_of_active_channels): f.write(' '+str(ind0 + 1) + ' | '+str(k_of_right_moving_active_channels[ind0])+' ' + str(velocity_of_right_moving_active_channels[ind0])+'\n') f.write('\n') for ind0 in range(number_of_active_channels): f.write(' -' + str(ind0 + 1) + ' | ' + str(k_of_left_moving_active_channels[ind0]) + ' ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n') f.write('\nScattering matrix:\n ') for ind0 in range(number_of_active_channels): f.write(str(ind0+1)+' ') f.write('\n') for ind1 in range(number_of_active_channels): f.write(' '+str(ind1+1)+' ') for ind2 in range(number_of_active_channels): f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+' ') f.write('\n') f.write('\n') for ind1 in range(number_of_active_channels): f.write(' -'+str(ind1+1)+' ') for ind2 in range(number_of_active_channels): f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+' ') f.write('\n') f.write('\n') f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n') f.write('Total conductance = '+str(total_conductance)+'\n') import guan guan.statistics_of_guan_package() # 已知h00和h01,计算散射矩阵并打印出散射矩阵的信息 def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'): import guan transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format) guan.statistics_of_guan_package() # 在无序下,计算散射矩阵 def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0): import numpy as np import math import copy import guan h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) right_self_energy = np.dot(h01, f_right) left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) for i0 in range(length): disorder = np.zeros((dim, dim)) for dim0 in range(dim): if np.random.uniform(0, 1)<=disorder_concentration: disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) if i0 == 0: green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) green_00_n = copy.deepcopy(green_nn_n) green_0n_n = copy.deepcopy(green_nn_n) green_n0_n = copy.deepcopy(green_nn_n) elif i0 != length-1: green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) else: green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n) temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right) reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) for dim0 in range(dim): for dim1 in range(dim): if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1]) if if_active == 1: transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] else: transmission_matrix[dim0, dim1] = 0 reflection_matrix[dim0, dim1] = 0 sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) for sum_of_tran_refl in sum_of_tran_refl_array: if sum_of_tran_refl > 1.001: print('Error Alert: scattering matrix is not normalized!') guan.statistics_of_guan_package() return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active # 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息 def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1): import guan transmission_matrix_for_active_channels_averaged = 0 reflection_matrix_for_active_channels_averaged = 0 for i0 in range(calculation_times): transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length, disorder_intensity, disorder_concentration) number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) transmission_matrix_for_active_channels_averaged += transmission_matrix_for_active_channels reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times guan.statistics_of_guan_package() return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged # Module 9: topological invariant # 通过高效法计算方格子的陈数 def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0): import numpy as np import math import cmath import guan if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] delta = 2*math.pi/precision chern_number = np.zeros(dim, dtype=complex) for kx in np.arange(-math.pi, math.pi, delta): if print_show == 1: print(kx) for ky in np.arange(-math.pi, math.pi, delta): H = hamiltonian_function(kx, ky) vector = guan.calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta, ky) vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta) vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) chern_number[i] = chern_number[i] + F chern_number = chern_number/(2*math.pi*1j) guan.statistics_of_guan_package() return chern_number # 通过高效法计算方格子的陈数(可计算简并的情况) def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0): import numpy as np import math import cmath delta = 2*math.pi/precision chern_number = 0 for kx in np.arange(-math.pi, math.pi, delta): if print_show == 1: print(kx) for ky in np.arange(-math.pi, math.pi, delta): H = hamiltonian_function(kx, ky) eigenvalue, vector = np.linalg.eigh(H) H_delta_kx = hamiltonian_function(kx+delta, ky) eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta) eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) dim = len(index_of_bands) det_value = 1 # first dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix # second dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix # third dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix # four dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value= det_value*dot_matrix chern_number += cmath.log(det_value) chern_number = chern_number/(2*math.pi*1j) import guan guan.statistics_of_guan_package() return chern_number # 通过Wilson loop方法计算方格子的陈数 def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): import numpy as np import math delta = 2*math.pi/precision_of_plaquettes chern_number = 0 for kx in np.arange(-math.pi, math.pi, delta): if print_show == 1: print(kx) for ky in np.arange(-math.pi, math.pi, delta): vector_array = [] # line_1 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_2 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_3 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_4 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) wilson_loop = 1 for i0 in range(len(vector_array)-1): wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1]) wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0]) arg = np.log(np.diagonal(wilson_loop))/1j chern_number = chern_number + arg chern_number = chern_number/(2*math.pi) import guan guan.statistics_of_guan_package() return chern_number # 通过Wilson loop方法计算方格子的陈数(可计算简并的情况) def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): import numpy as np import math delta = 2*math.pi/precision_of_plaquettes chern_number = 0 for kx in np.arange(-math.pi, math.pi, delta): if print_show == 1: print(kx) for ky in np.arange(-math.pi, math.pi, delta): vector_array = [] # line_1 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_2 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_3 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_4 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) wilson_loop = 1 dim = len(index_of_bands) for i0 in range(len(vector_array)-1): dot_matrix = np.zeros((dim , dim), dtype=complex) i01 = 0 for dim1 in index_of_bands: i02 = 0 for dim2 in index_of_bands: dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2]) i02 += 1 i01 += 1 det_value = np.linalg.det(dot_matrix) wilson_loop = wilson_loop*det_value dot_matrix_plus = np.zeros((dim , dim), dtype=complex) i01 = 0 for dim1 in index_of_bands: i02 = 0 for dim2 in index_of_bands: dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2]) i02 += 1 i01 += 1 det_value = np.linalg.det(dot_matrix_plus) wilson_loop = wilson_loop*det_value arg = np.log(wilson_loop)/1j chern_number = chern_number + arg chern_number = chern_number/(2*math.pi) import guan guan.statistics_of_guan_package() return chern_number # 通过高效法计算贝利曲率 def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): import numpy as np import cmath import guan import math if k_min == 'default': k_min = -math.pi if k_max == 'default': k_max=math.pi if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] delta = (k_max-k_min)/precision k_array = np.arange(k_min, k_max, delta) berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex) i0 = 0 for kx in k_array: if print_show == 1: print(kx) j0 = 0 for ky in k_array: H = hamiltonian_function(kx, ky) vector = guan.calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta, ky) vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta) vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) berry_curvature = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))/delta/delta*1j berry_curvature_array[j0, i0, i] = berry_curvature j0 += 1 i0 += 1 guan.statistics_of_guan_package() return k_array, berry_curvature_array # 通过高效法计算贝利曲率(可计算简并的情况) def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0): import numpy as np import cmath import math if k_min == 'default': k_min = -math.pi if k_max == 'default': k_max=math.pi delta = (k_max-k_min)/precision k_array = np.arange(k_min, k_max, delta) berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex) i00 = 0 for kx in np.arange(k_min, k_max, delta): if print_show == 1: print(kx) j00 = 0 for ky in np.arange(k_min, k_max, delta): H = hamiltonian_function(kx, ky) eigenvalue, vector = np.linalg.eigh(H) H_delta_kx = hamiltonian_function(kx+delta, ky) eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta) eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) dim = len(index_of_bands) det_value = 1 # first dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix # second dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix # third dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value = det_value*dot_matrix # four dot product dot_matrix = np.zeros((dim , dim), dtype=complex) i0 = 0 for dim1 in index_of_bands: j0 = 0 for dim2 in index_of_bands: dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) j0 += 1 i0 += 1 dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) det_value= det_value*dot_matrix berry_curvature = cmath.log(det_value)/delta/delta*1j berry_curvature_array[j00, i00] = berry_curvature j00 += 1 i00 += 1 import guan guan.statistics_of_guan_package() return k_array, berry_curvature_array # 通过Wilson loop方法计算贝里曲率 def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): import numpy as np import math if k_min == 'default': k_min = -math.pi if k_max == 'default': k_max=math.pi if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] delta = (k_max-k_min)/precision_of_plaquettes k_array = np.arange(k_min, k_max, delta) berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex) i00 = 0 for kx in k_array: if print_show == 1: print(kx) j00 = 0 for ky in k_array: vector_array = [] # line_1 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_2 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_3 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_4 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) wilson_loop = 1 for i0 in range(len(vector_array)-1): wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1]) wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0]) berry_curvature = np.log(np.diagonal(wilson_loop))/delta/delta*1j berry_curvature_array[j00, i00, :]=berry_curvature j00 += 1 i00 += 1 import guan guan.statistics_of_guan_package() return k_array, berry_curvature_array # 通过Wilson loop方法计算贝里曲率(可计算简并的情况) def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): import numpy as np import math if k_min == 'default': k_min = -math.pi if k_max == 'default': k_max=math.pi delta = (k_max-k_min)/precision_of_plaquettes k_array = np.arange(k_min, k_max, delta) berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex) i000 = 0 for kx in k_array: if print_show == 1: print(kx) j000 = 0 for ky in k_array: vector_array = [] # line_1 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_2 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_3 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_4 for i0 in range(precision_of_wilson_loop): H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) wilson_loop = 1 dim = len(index_of_bands) for i0 in range(len(vector_array)-1): dot_matrix = np.zeros((dim , dim), dtype=complex) i01 = 0 for dim1 in index_of_bands: i02 = 0 for dim2 in index_of_bands: dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2]) i02 += 1 i01 += 1 det_value = np.linalg.det(dot_matrix) wilson_loop = wilson_loop*det_value dot_matrix_plus = np.zeros((dim , dim), dtype=complex) i01 = 0 for dim1 in index_of_bands: i02 = 0 for dim2 in index_of_bands: dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2]) i02 += 1 i01 += 1 det_value = np.linalg.det(dot_matrix_plus) wilson_loop = wilson_loop*det_value berry_curvature = np.log(wilson_loop)/delta/delta*1j berry_curvature_array[j000, i000]=berry_curvature j000 += 1 i000 += 1 import guan guan.statistics_of_guan_package() return k_array, berry_curvature_array # 计算蜂窝格子的陈数(高效法) def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): import numpy as np import math import cmath import guan if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] chern_number = np.zeros(dim, dtype=complex) L1 = 4*math.sqrt(3)*math.pi/9/a L2 = 2*math.sqrt(3)*math.pi/9/a L3 = 2*math.pi/3/a delta1 = 2*L1/precision delta3 = 2*L3/precision for kx in np.arange(-L1, L1, delta1): if print_show == 1: print(kx) for ky in np.arange(-L3, L3, delta3): if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*math.tan(math.pi/3)<=ky<=(L1-kx)*math.tan(math.pi/3)) or (kx<-L2 and -(kx-(-L1))*math.tan(math.pi/3)<=ky<=(kx-(-L1))*math.tan(math.pi/3)): H = hamiltonian_function(kx, ky) vector = guan.calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta1, ky) vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta3) vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3) vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) chern_number[i] = chern_number[i] + F chern_number = chern_number/(2*math.pi*1j) guan.statistics_of_guan_package() return chern_number # 计算Wilson loop def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): import numpy as np import guan import math if k_min == 'default': k_min = -math.pi if k_max == 'default': k_max=math.pi k_array = np.linspace(k_min, k_max, precision) dim = np.array(hamiltonian_function(0)).shape[0] wilson_loop_array = np.ones(dim, dtype=complex) for i in range(dim): if print_show == 1: print(i) eigenvector_array = [] for k in k_array: eigenvector = guan.calculate_eigenvector(hamiltonian_function(k)) if k != k_max: eigenvector_array.append(eigenvector[:, i]) else: eigenvector_array.append(eigenvector_array[0]) for i0 in range(precision-1): F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) guan.statistics_of_guan_package() return wilson_loop_array # Module 10: plot figures # 导入plt, fig, ax def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left) ax.grid() ax.tick_params(labelsize=labelsize) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] import guan guan.statistics_of_guan_package() return plt, fig, ax # 基于plt, fig, ax开始画图 def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None): if color==None: ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) else: ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize, color=color) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y_min=min(y_array) if y_max==None: y_max=max(y_array) ax.set_ylim(y_min, y_max) import guan guan.statistics_of_guan_package() # 画图 def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2): import guan plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y_min=min(y_array) if y_max==None: y_max=max(y_array) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') guan.statistics_of_guan_package() # 一组横坐标数据,两组纵坐标数据画图 def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2): import guan plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y_min=min([y1_min, y2_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y_max=max([y1_max, y2_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') guan.statistics_of_guan_package() # 两组横坐标数据,两组纵坐标数据画图 def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2): import guan plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y_min=min([y1_min, y2_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y_max=max([y1_max, y2_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') guan.statistics_of_guan_package() # 一组横坐标数据,三组纵坐标数据画图 def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2): import guan plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y3_min=min(y3_array) y_min=min([y1_min, y2_min, y3_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y3_max=max(y3_array) y_max=max([y1_max, y2_max, y3_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') guan.statistics_of_guan_package() # 三组横坐标数据,三组纵坐标数据画图 def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2): import guan plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') if y_min!=None or y_max!=None: if y_min==None: y1_min=min(y1_array) y2_min=min(y2_array) y3_min=min(y3_array) y_min=min([y1_min, y2_min, y3_min]) if y_max==None: y1_max=max(y1_array) y2_max=max(y2_array) y3_max=max(y3_array) y_max=max([y1_max, y2_max, y3_max]) ax.set_ylim(y_min, y_max) if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') guan.statistics_of_guan_package() # 画三维图 def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100): import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator matrix = np.array(matrix) fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) plt.subplots_adjust(bottom=0.1, right=0.65) x_array, y_array = np.meshgrid(x_array, y_array) if len(matrix.shape) == 2: surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False) elif len(matrix.shape) == 3: for i0 in range(matrix.shape[2]): surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.zaxis.set_major_locator(LinearLocator(5)) ax.zaxis.set_major_formatter('{x:.2f}') if z_min!=None or z_max!=None: if z_min==None: z_min=matrix.min() if z_max==None: z_max=matrix.max() ax.set_zlim(z_min, z_max) ax.tick_params(labelsize=labelsize) labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.8, 0.1, 0.05, 0.8]) cbar = fig.colorbar(surf, cax=cax) cbar.ax.tick_params(labelsize=labelsize) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') import guan guan.statistics_of_guan_package() # 画Contour图 def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2) x_array, y_array = np.meshgrid(x_array, y_array) contour = ax.contourf(x_array,y_array,matrix,cmap=cmap, levels=levels) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') ax.tick_params(labelsize=labelsize) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.8, 0.2, 0.05, 0.68]) cbar = fig.colorbar(contour, cax=cax) cbar.ax.tick_params(labelsize=labelsize) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') import guan guan.statistics_of_guan_package() # 画棋盘图/伪彩色图 def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2) x_array, y_array = np.meshgrid(x_array, y_array) contour = ax.pcolor(x_array,y_array,matrix, cmap=cmap) ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman') ax.tick_params(labelsize=labelsize) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.8, 0.2, 0.05, 0.68]) cbar = fig.colorbar(contour, cax=cax) cbar.ax.tick_params(labelsize=labelsize) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+file_format, dpi=dpi) if show == 1: plt.show() plt.close('all') import guan guan.statistics_of_guan_package() # 通过坐标画点和线 def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300): import numpy as np import matplotlib.pyplot as plt coordinate_array = np.array(coordinate_array) print(coordinate_array.shape) x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0]) y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1]) fig, ax = plt.subplots(figsize=(6*x_range/y_range,6)) plt.subplots_adjust(left=0, bottom=0, right=1, top=1) plt.axis('off') if draw_lines==1: for i1 in range(coordinate_array.shape[0]): for i2 in range(coordinate_array.shape[0]): if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance: ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth) if draw_dots==1: for i in range(coordinate_array.shape[0]): ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize) if show==1: plt.show() if save==1: if file_format=='.eps': plt.savefig(filename+file_format) else: plt.savefig(filename+file_format, dpi=dpi) import guan guan.statistics_of_guan_package() # 合并两个图片 def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300): import numpy as np num = np.array(image_path_array).shape[0] if num != 2: print('Error: The number of images should be two!') else: import matplotlib.pyplot as plt import matplotlib.image as mpimg fig = plt.figure(figsize=figsize) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) image_1 = mpimg.imread(image_path_array[0]) image_2 = mpimg.imread(image_path_array[1]) ax1.imshow(image_1) ax2.imshow(image_2) ax1.axis('off') ax2.axis('off') if show == 1: plt.show() if save == 1: plt.savefig(filename+file_format, dpi=dpi) plt.close('all') import guan guan.statistics_of_guan_package() # 合并三个图片 def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300): import numpy as np num = np.array(image_path_array).shape[0] if num != 3: print('Error: The number of images should be three!') else: import matplotlib.pyplot as plt import matplotlib.image as mpimg fig = plt.figure(figsize=figsize) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) image_1 = mpimg.imread(image_path_array[0]) image_2 = mpimg.imread(image_path_array[1]) image_3 = mpimg.imread(image_path_array[2]) ax1.imshow(image_1) ax2.imshow(image_2) ax3.imshow(image_3) ax1.axis('off') ax2.axis('off') ax3.axis('off') if show == 1: plt.show() if save == 1: plt.savefig(filename+file_format, dpi=dpi) plt.close('all') import guan guan.statistics_of_guan_package() # 合并四个图片 def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300): import numpy as np num = np.array(image_path_array).shape[0] if num != 4: print('Error: The number of images should be four!') else: import matplotlib.pyplot as plt import matplotlib.image as mpimg fig = plt.figure(figsize=figsize) plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) image_1 = mpimg.imread(image_path_array[0]) image_2 = mpimg.imread(image_path_array[1]) image_3 = mpimg.imread(image_path_array[2]) image_4 = mpimg.imread(image_path_array[3]) ax1.imshow(image_1) ax2.imshow(image_2) ax3.imshow(image_3) ax4.imshow(image_4) ax1.axis('off') ax2.axis('off') ax3.axis('off') ax4.axis('off') if show == 1: plt.show() if save == 1: plt.savefig(filename+file_format, dpi=dpi) plt.close('all') import guan guan.statistics_of_guan_package() # 对于某个目录中的txt文件,批量读取和画图 def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): import re import os import guan for root, dirs, files in os.walk(directory): for file in files: if re.search('^txt.', file[::-1]): filename = file[:-4] x_array, y_array = guan.read_one_dimensional_data(filename=filename) guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename) guan.statistics_of_guan_package() # 制作GIF动画 def make_gif(image_path_array, filename='a', duration=0.1): import imageio images = [] for image_path in image_path_array: im = imageio.imread(image_path) images.append(im) imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) import guan guan.statistics_of_guan_package() # 选取颜色 def color_matplotlib(): color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] import guan guan.statistics_of_guan_package() return color_array # Module 11: read and write # 将数据存到文件 def dump_data(data, filename, file_format='.txt'): import pickle with open(filename+file_format, 'wb') as f: pickle.dump(data, f) import guan guan.statistics_of_guan_package() # 从文件中恢复数据到变量 def load_data(filename, file_format='.txt'): import pickle with open(filename+file_format, 'rb') as f: data = pickle.load(f) import guan guan.statistics_of_guan_package() return data # 读取文件中的一维数据(每一行一组x和y) def read_one_dimensional_data(filename='a', file_format='.txt'): import numpy as np f = open(filename+file_format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) for row in row_list: column = np.array(row.split()) if column.shape[0] != 0: x_array = np.append(x_array, [float(column[0])], axis=0) y_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): y_row[dim0] = float(column[dim0+1]) if np.array(y_array).shape[0] == 0: y_array = [y_row] else: y_array = np.append(y_array, [y_row], axis=0) import guan guan.statistics_of_guan_package() return x_array, y_array # 读取文件中的一维数据(每一行一组x和y)(支持复数形式) def read_one_dimensional_complex_data(filename='a', file_format='.txt'): import numpy as np f = open(filename+file_format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) for row in row_list: column = np.array(row.split()) if column.shape[0] != 0: x_array = np.append(x_array, [complex(column[0])], axis=0) y_row = np.zeros(dim_column-1, dtype=complex) for dim0 in range(dim_column-1): y_row[dim0] = complex(column[dim0+1]) if np.array(y_array).shape[0] == 0: y_array = [y_row] else: y_array = np.append(y_array, [y_row], axis=0) import guan guan.statistics_of_guan_package() return x_array, y_array # 读取文件中的二维数据(第一行和列分别为横纵坐标) def read_two_dimensional_data(filename='a', file_format='.txt'): import numpy as np f = open(filename+file_format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) matrix = np.array([]) for i0 in range(row_list.shape[0]): column = np.array(row_list[i0].split()) if i0 == 0: x_str = column[1::] x_array = np.zeros(x_str.shape[0]) for i00 in range(x_str.shape[0]): x_array[i00] = float(x_str[i00]) elif column.shape[0] != 0: y_array = np.append(y_array, [float(column[0])], axis=0) matrix_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): matrix_row[dim0] = float(column[dim0+1]) if np.array(matrix).shape[0] == 0: matrix = [matrix_row] else: matrix = np.append(matrix, [matrix_row], axis=0) import guan guan.statistics_of_guan_package() return x_array, y_array, matrix # 读取文件中的二维数据(第一行和列分别为横纵坐标)(支持复数形式) def read_two_dimensional_complex_data(filename='a', file_format='.txt'): import numpy as np f = open(filename+file_format, 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x_array = np.array([]) y_array = np.array([]) matrix = np.array([]) for i0 in range(row_list.shape[0]): column = np.array(row_list[i0].split()) if i0 == 0: x_str = column[1::] x_array = np.zeros(x_str.shape[0], dtype=complex) for i00 in range(x_str.shape[0]): x_array[i00] = complex(x_str[i00]) elif column.shape[0] != 0: y_array = np.append(y_array, [complex(column[0])], axis=0) matrix_row = np.zeros(dim_column-1, dtype=complex) for dim0 in range(dim_column-1): matrix_row[dim0] = complex(column[dim0+1]) if np.array(matrix).shape[0] == 0: matrix = [matrix_row] else: matrix = np.append(matrix, [matrix_row], axis=0) import guan guan.statistics_of_guan_package() return x_array, y_array, matrix # 读取文件中的二维数据(不包括x和y) def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'): import numpy as np matrix = np.loadtxt(filename+file_format) import guan guan.statistics_of_guan_package() return matrix # 打开文件用于新增内容 def open_file(filename='a', file_format='.txt'): f = open(filename+file_format, 'a', encoding='UTF-8') import guan guan.statistics_of_guan_package() return f # 在文件中写入一维数据(每一行一组x和y) def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'): import guan with open(filename+file_format, 'w', encoding='UTF-8') as f: guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f) import guan guan.statistics_of_guan_package() # 在文件中写入一维数据(每一行一组x和y)(需要输入文件) def write_one_dimensional_data_without_opening_file(x_array, y_array, f): import numpy as np x_array = np.array(x_array) y_array = np.array(y_array) i0 = 0 for x0 in x_array: f.write(str(x0)+' ') if len(y_array.shape) == 1: f.write(str(y_array[i0])+'\n') elif len(y_array.shape) == 2: for j0 in range(y_array.shape[1]): f.write(str(y_array[i0, j0])+' ') f.write('\n') i0 += 1 import guan guan.statistics_of_guan_package() # 在文件中写入二维数据(第一行和列分别为横纵坐标) def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'): import guan with open(filename+file_format, 'w', encoding='UTF-8') as f: guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) guan.statistics_of_guan_package() # 在文件中写入二维数据(第一行和列分别为横纵坐标)(需要输入文件) def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f): import numpy as np x_array = np.array(x_array) y_array = np.array(y_array) matrix = np.array(matrix) f.write('0 ') for x0 in x_array: f.write(str(x0)+' ') f.write('\n') i0 = 0 for y0 in y_array: f.write(str(y0)) j0 = 0 for x0 in x_array: f.write(' '+str(matrix[i0, j0])+' ') j0 += 1 f.write('\n') i0 += 1 import guan guan.statistics_of_guan_package() # 在文件中写入二维数据(不包括x和y) def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'): import guan with open(filename+file_format, 'w', encoding='UTF-8') as f: guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f) guan.statistics_of_guan_package() # 在文件中写入二维数据(不包括x和y)(需要输入文件) def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f): for row in matrix: for element in row: f.write(str(element)+' ') f.write('\n') import guan guan.statistics_of_guan_package() # 以显示编号的样式,打印数组 def print_array_with_index(array, show_index=1, index_type=0): if show_index==0: for i0 in array: print(i0) else: if index_type==0: index = 0 for i0 in array: print(index, i0) index += 1 else: index = 0 for i0 in array: index += 1 print(index, i0) import guan guan.statistics_of_guan_package() # Module 12: file processing # 自动先后运行程序(串行) def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0): import os import time if show_time == 1: start = time.time() i0 = 0 for program_file in program_files: i0 += 1 if show_time == 1: start_0 = time.time() os.system(execute+program_file) if show_time == 1: end_0 = time.time() print('Running time of program_'+str(i0)+' = '+str((end_0-start_0)/60)+' min') if show_time == 1: end = time.time() print('Total running time = '+str((end-start)/60)+' min') import guan guan.statistics_of_guan_package() # 如果不存在文件夹,则新建文件夹 def make_directory(directory='./test'): import os if not os.path.exists(directory): os.makedirs(directory) import guan guan.statistics_of_guan_package() # 复制一份文件 def copy_file(file1='./a.txt', file2='./b.txt'): import shutil shutil.copy(file1, file2) import guan guan.statistics_of_guan_package() # 拼接两个PDF文件 def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'): import PyPDF2 output_pdf = PyPDF2.PdfWriter() with open(input_file_1, 'rb') as file1: pdf1 = PyPDF2.PdfReader(file1) for page in range(len(pdf1.pages)): output_pdf.add_page(pdf1.pages[page]) with open(input_file_2, 'rb') as file2: pdf2 = PyPDF2.PdfReader(file2) for page in range(len(pdf2.pages)): output_pdf.add_page(pdf2.pages[page]) with open(output_file, 'wb') as combined_file: output_pdf.write(combined_file) import guan guan.statistics_of_guan_package() # 将PDF文件转成文本 def pdf_to_text(pdf_path): from pdfminer.pdfparser import PDFParser, PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.converter import PDFPageAggregator from pdfminer.layout import LAParams, LTTextBox from pdfminer.pdfinterp import PDFTextExtractionNotAllowed import logging logging.Logger.propagate = False logging.getLogger().setLevel(logging.ERROR) praser = PDFParser(open(pdf_path, 'rb')) doc = PDFDocument() praser.set_document(doc) doc.set_parser(praser) doc.initialize() if not doc.is_extractable: raise PDFTextExtractionNotAllowed else: rsrcmgr = PDFResourceManager() laparams = LAParams() device = PDFPageAggregator(rsrcmgr, laparams=laparams) interpreter = PDFPageInterpreter(rsrcmgr, device) content = '' for page in doc.get_pages(): interpreter.process_page(page) layout = device.get_result() for x in layout: if isinstance(x, LTTextBox): content = content + x.get_text().strip() import guan guan.statistics_of_guan_package() return content # 获取PDF文件页数 def get_pdf_page_number(pdf_path): import PyPDF2 pdf_file = open(pdf_path, 'rb') pdf_reader = PyPDF2.PdfReader(pdf_file) num_pages = len(pdf_reader.pages) import guan guan.statistics_of_guan_package() return num_pages # 获取PDF文件指定页面的内容 def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1): import PyPDF2 pdf_file = open(pdf_path, 'rb') pdf_reader = PyPDF2.PdfReader(pdf_file) num_pages = len(pdf_reader.pages) for page_num0 in range(num_pages): if page_num0 == page_num-1: page = pdf_reader.pages[page_num0] page_text = page.extract_text() pdf_file.close() import guan guan.statistics_of_guan_package() return page_text # 获取PDF文献中的链接。例如: link_starting_form='https://doi.org' def get_links_from_pdf(pdf_path, link_starting_form=''): import PyPDF2 import re pdfReader = PyPDF2.PdfFileReader(pdf_path) pages = pdfReader.getNumPages() i0 = 0 links = [] for page in range(pages): pageSliced = pdfReader.getPage(page) pageObject = pageSliced.getObject() if '/Annots' in pageObject.keys(): ann = pageObject['/Annots'] old = '' for a in ann: u = a.getObject() if '/A' in u.keys(): if re.search(re.compile('^'+link_starting_form), u['/A']['/URI']): if u['/A']['/URI'] != old: links.append(u['/A']['/URI']) i0 += 1 old = u['/A']['/URI'] import guan guan.statistics_of_guan_package() return links # 通过Sci-Hub网站下载文献 def download_with_scihub(address=None, num=1): from bs4 import BeautifulSoup import re import requests import os if num==1 and address!=None: address_array = [address] else: address_array = [] for i in range(num): address = input('\nInput:') address_array.append(address) for address in address_array: r = requests.post('https://sci-hub.st/', data={'request': address}) print('\nResponse:', r) print('Address:', r.url) soup = BeautifulSoup(r.text, features='lxml') pdf_URL = soup.embed['src'] # pdf_URL = soup.iframe['src'] # This is a code line of history version which fails to get pdf URL. if re.search(re.compile('^https:'), pdf_URL): pass else: pdf_URL = 'https:'+pdf_URL print('PDF address:', pdf_URL) name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::] print('PDF name:', name) print('Directory:', os.getcwd()) print('\nDownloading...') r = requests.get(pdf_URL, stream=True) with open(name, 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) print('Completed!\n') if num != 1: print('All completed!\n') import guan guan.statistics_of_guan_package() # 将文件目录结构写入Markdown文件 def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None): import os f = open(filename+'.md', 'w', encoding="utf-8") filenames1 = os.listdir(directory) u0 = 0 for filename1 in filenames1[::reverse_positive_or_negative]: filename1_with_path = os.path.join(directory,filename1) if os.path.isfile(filename1_with_path): if os.path.splitext(filename1)[1] not in banned_file_format: if hide_file_format == None: f.write('+ '+str(filename1)+'\n\n') else: f.write('+ '+str(os.path.splitext(filename1)[0])+'\n\n') else: u0 += 1 if divided_line != None and u0 != 1: f.write('--------\n\n') if starting_from_h1 == None: f.write('#') f.write('# '+str(filename1)+'\n\n') filenames2 = os.listdir(filename1_with_path) i0 = 0 for filename2 in filenames2[::reverse_positive_or_negative]: filename2_with_path = os.path.join(directory, filename1, filename2) if os.path.isfile(filename2_with_path): if os.path.splitext(filename2)[1] not in banned_file_format: if hide_file_format == None: f.write('+ '+str(filename2)+'\n\n') else: f.write('+ '+str(os.path.splitext(filename2)[0])+'\n\n') else: i0 += 1 if starting_from_h1 == None: f.write('#') if show_second_number != None: f.write('## '+str(i0)+'. '+str(filename2)+'\n\n') else: f.write('## '+str(filename2)+'\n\n') j0 = 0 filenames3 = os.listdir(filename2_with_path) for filename3 in filenames3[::reverse_positive_or_negative]: filename3_with_path = os.path.join(directory, filename1, filename2, filename3) if os.path.isfile(filename3_with_path): if os.path.splitext(filename3)[1] not in banned_file_format: if hide_file_format == None: f.write('+ '+str(filename3)+'\n\n') else: f.write('+ '+str(os.path.splitext(filename3)[0])+'\n\n') else: j0 += 1 if starting_from_h1 == None: f.write('#') if show_third_number != None: f.write('### ('+str(j0)+') '+str(filename3)+'\n\n') else: f.write('### '+str(filename3)+'\n\n') filenames4 = os.listdir(filename3_with_path) for filename4 in filenames4[::reverse_positive_or_negative]: filename4_with_path = os.path.join(directory, filename1, filename2, filename3, filename4) if os.path.isfile(filename4_with_path): if os.path.splitext(filename4)[1] not in banned_file_format: if hide_file_format == None: f.write('+ '+str(filename4)+'\n\n') else: f.write('+ '+str(os.path.splitext(filename4)[0])+'\n\n') else: if starting_from_h1 == None: f.write('#') f.write('#### '+str(filename4)+'\n\n') filenames5 = os.listdir(filename4_with_path) for filename5 in filenames5[::reverse_positive_or_negative]: filename5_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5) if os.path.isfile(filename5_with_path): if os.path.splitext(filename5)[1] not in banned_file_format: if hide_file_format == None: f.write('+ '+str(filename5)+'\n\n') else: f.write('+ '+str(os.path.splitext(filename5)[0])+'\n\n') else: if starting_from_h1 == None: f.write('#') f.write('##### '+str(filename5)+'\n\n') filenames6 = os.listdir(filename5_with_path) for filename6 in filenames6[::reverse_positive_or_negative]: filename6_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5, filename6) if os.path.isfile(filename6_with_path): if os.path.splitext(filename6)[1] not in banned_file_format: if hide_file_format == None: f.write('+ '+str(filename6)+'\n\n') else: f.write('+ '+str(os.path.splitext(filename6)[0])+'\n\n') else: if starting_from_h1 == None: f.write('#') f.write('###### '+str(filename6)+'\n\n') f.close() import guan guan.statistics_of_guan_package() # 查找文件名相同的文件 def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000): import os from collections import Counter file_list = [] for root, dirs, files in os.walk(directory): for i0 in range(len(files)): file_list.append(files[i0]) for word in ignored_directory_with_words: if word in root: file_list.remove(files[i0]) for word in ignored_file_with_words: if word in files[i0]: try: file_list.remove(files[i0]) except: pass count_file = Counter(file_list).most_common(num) repeated_file = [] for item in count_file: if item[1]>1: repeated_file.append(item) import guan guan.statistics_of_guan_package() return repeated_file # 统计各个子文件夹中的文件数量 def count_file_in_sub_directory(directory='./', smaller_than_num=None): import os from collections import Counter dirs_list = [] for root, dirs, files in os.walk(directory): if dirs != []: for i0 in range(len(dirs)): dirs_list.append(root+'/'+dirs[i0]) for sub_dir in dirs_list: file_list = [] for root, dirs, files in os.walk(sub_dir): for i0 in range(len(files)): file_list.append(files[i0]) count_file = len(file_list) if smaller_than_num == None: print(sub_dir) print(count_file) print() else: if count_filei0 and abs(a1-a2)

', html, re.S) if random_on==1: random.shuffle(contents) if reverse==1: contents.reverse() for content in contents: soup2 = BeautifulSoup(content, features='lxml') all_h2 = soup2.find_all('h2') for h2 in all_h2: if re.search('\d*. ', h2.get_text()): word = re.findall('[a-zA-Z].*', h2.get_text(), re.S)[0] exist = os.path.exists(directory+word+'.mp3') if not exist: try: if re.search(word, html_file): r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True) with open(directory+word+'.mp3', 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) except: pass print(h2.get_text()) try: pygame.mixer.init() track = pygame.mixer.music.load(directory+word+'.mp3') pygame.mixer.music.play() if show_link==1: print('https://www.ldoceonline.com/dictionary/'+word) except: pass translation = re.findall('

.*?

', content, re.S)[0][3:-4] if show_translation==1: time.sleep(translation_time) print(translation) time.sleep(rest_time) pygame.mixer.music.stop() print() import guan guan.statistics_of_guan_package() # 播放挑选过后的学术单词 def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3): from bs4 import BeautifulSoup import re import urllib.request import requests import os import pygame import time import ssl import random ssl._create_default_https_context = ssl._create_unverified_context html = urllib.request.urlopen("https://www.guanjihuan.com/archives/24732").read().decode('utf-8') if bre_or_ame == 'ame': directory = 'words_mp3_ameProns/' elif bre_or_ame == 'bre': directory = 'words_mp3_breProns/' exist_directory = os.path.exists(directory) html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8') if exist_directory == 0: os.makedirs(directory) soup = BeautifulSoup(html, features='lxml') contents = re.findall('
  • \d.*?
  • ', html, re.S) if random_on==1: random.shuffle(contents) if reverse==1: contents.reverse() for content in contents: soup2 = BeautifulSoup(content, features='lxml') all_li = soup2.find_all('li') for li in all_li: if re.search('\d*. ', li.get_text()): word = re.findall('\s[a-zA-Z].*?\s', li.get_text(), re.S)[0][1:-1] exist = os.path.exists(directory+word+'.mp3') if not exist: try: if re.search(word, html_file): r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True) with open(directory+word+'.mp3', 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) except: pass print(li.get_text()) try: pygame.mixer.init() track = pygame.mixer.music.load(directory+word+'.mp3') pygame.mixer.music.play() if show_link==1: print('https://www.ldoceonline.com/dictionary/'+word) except: pass time.sleep(rest_time) pygame.mixer.music.stop() print() import guan guan.statistics_of_guan_package() # 播放元素周期表上的单词 def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1): from bs4 import BeautifulSoup import re import urllib.request import requests import os import pygame import time import ssl import random ssl._create_default_https_context = ssl._create_unverified_context html = urllib.request.urlopen("https://www.guanjihuan.com/archives/10897").read().decode('utf-8') directory = 'prons/' exist_directory = os.path.exists(directory) html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/periodic_table_of_elements/"+directory).read().decode('utf-8') if exist_directory == 0: os.makedirs(directory) soup = BeautifulSoup(html, features='lxml') contents = re.findall('

    ', html, re.S) if random_on==1: random.shuffle(contents) for content in contents: soup2 = BeautifulSoup(content, features='lxml') all_h2 = soup2.find_all('h2') for h2 in all_h2: if re.search('\d*. ', h2.get_text()): word = re.findall('[a-zA-Z].* \(', h2.get_text(), re.S)[0][:-2] exist = os.path.exists(directory+word+'.mp3') if not exist: try: if re.search(word, html_file): r = requests.get("https://file.guanjihuan.com/words/periodic_table_of_elements/prons/"+word+".mp3", stream=True) with open(directory+word+'.mp3', 'wb') as f: for chunk in r.iter_content(chunk_size=32): f.write(chunk) except: pass print(h2.get_text()) try: pygame.mixer.init() track = pygame.mixer.music.load(directory+word+'.mp3') pygame.mixer.music.play() if show_link==1: print('https://www.merriam-webster.com/dictionary/'+word) except: pass translation = re.findall('

    .*?

    ', content, re.S)[0][3:-4] if show_translation==1: time.sleep(translation_time) print(translation) time.sleep(rest_time) pygame.mixer.music.stop() print() import guan guan.statistics_of_guan_package() # 获取Guan软件包当前模块的所有函数名 def get_all_function_names_in_current_module(): import inspect current_module = inspect.getmodule(inspect.currentframe()) function_names = [name for name, obj in inspect.getmembers(current_module) if inspect.isfunction(obj)] import guan guan.statistics_of_guan_package() return function_names # 统计Guan软件包中的函数数量 def count_functions_in_current_module(): import guan function_names = guan.get_all_function_names_in_current_module() num_functions = len(function_names) guan.statistics_of_guan_package() return num_functions # 获取当前函数名 def get_current_function_name(): import inspect current_function_name = inspect.currentframe().f_code.co_name import guan guan.statistics_of_guan_package() return current_function_name # 获取调用本函数的函数名 def get_calling_function_name(layer=1): import inspect caller = inspect.stack()[layer] calling_function_name = caller.function return calling_function_name # 获取当前日期字符串 def get_date(bar=True): import datetime datetime_date = str(datetime.date.today()) if bar==False: datetime_date = datetime_date.replace('-', '') return datetime_date # 获取当前时间字符串 def get_time(): import datetime datetime_time = datetime.datetime.now().strftime('%H:%M:%S') return datetime_time # 获取MAC地址 def get_mac_address(): import uuid mac_address = uuid.UUID(int=uuid.getnode()).hex[-12:].upper() mac_address = '-'.join([mac_address[i:i+2] for i in range(0, 11, 2)]) return mac_address # Guan软件包的使用统计(不涉及到用户的个人数据) def statistics_of_guan_package(): try: import socket import guan message_calling = guan.get_calling_function_name(layer=3) if message_calling == '': datetime_date = guan.get_date() datetime_time = guan.get_time() client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket.settimeout(0.5) client_socket.connect(('py.guanjihuan.com', 12345)) message = guan.get_calling_function_name(layer=2) send_message = datetime_date + ' ' + datetime_time + ' version_0.1.10 guan.' + message+'\n' client_socket.send(send_message.encode()) client_socket.close() client_socket2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client_socket2.settimeout(0.5) client_socket2.connect(('py.guanjihuan.com', 12345)) mac_address = get_mac_address() send_mac_address = 'version_0.1.10 MAC_address: '+mac_address+'\n' client_socket2.send(send_mac_address.encode()) client_socket2.close() except: pass # 获取Python软件包的最新版本 def get_latest_version(package_name='guan', timeout=2): import requests url = f"https://pypi.org/pypi/{package_name}/json" try: response = requests.get(url, timeout=timeout) except: return None if response.status_code == 200: data = response.json() latest_version = data["info"]["version"] return latest_version else: return None # 获取软件包的本机版本 def get_current_version(package_name='guan'): import importlib.metadata try: current_version = importlib.metadata.version(package_name) return current_version except: return None # Guan软件包升级提示 def notification_of_upgrade(): try: latest_version = get_latest_version(package_name='guan', timeout=2) current_version = get_current_version('guan') if latest_version != None and current_version != None: if latest_version != current_version: print('提示:您当前使用的版本是 guan-'+current_version+',目前已经有最新版本 guan-'+latest_version+'。您可以通过以下命令对软件包进行升级:pip install --upgrade guan') except: pass notification_of_upgrade()