# Module: Hamiltonian_of_examples import guan # 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件) @guan.function_decorator def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): import numpy as np on_site = np.array(on_site) hopping = np.array(hopping) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) for i0 in range(N): hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site for i0 in range(N-1): hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() if period == 1: hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() return hamiltonian # 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) @guan.function_decorator def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): import numpy as np on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() if period_1 == 1: for i2 in range(N2): hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() return hamiltonian # 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) @guan.function_decorator def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): import numpy as np on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() for i1 in range(N1): for i2 in range(N2): for i3 in range(N3-1): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() if period_1 == 1: for i2 in range(N2): for i3 in range(N3): hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() if period_3 == 1: for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() return hamiltonian # 构建有限尺寸的SSH模型哈密顿量 @guan.function_decorator def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): import numpy as np hamiltonian = np.zeros((2*N, 2*N)) for i in range(N): hamiltonian[i*2+0, i*2+0] = onsite_1 hamiltonian[i*2+1, i*2+1] = onsite_2 hamiltonian[i*2+0, i*2+1] = v hamiltonian[i*2+1, i*2+0] = v for i in range(N-1): hamiltonian[i*2+1, (i+1)*2+0] = w hamiltonian[(i+1)*2+0, i*2+1] = w if period==1: hamiltonian[0, 2*N-1] = w hamiltonian[2*N-1, 0] = w return hamiltonian # 获取Zigzag边的石墨烯条带的元胞间跃迁 @guan.function_decorator def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): import numpy as np hopping = np.zeros((4*N, 4*N), dtype=complex) for i0 in range(N): hopping[4*i0+0, 4*i0+0] = eta hopping[4*i0+1, 4*i0+1] = eta hopping[4*i0+2, 4*i0+2] = eta hopping[4*i0+3, 4*i0+3] = eta hopping[4*i0+1, 4*i0+0] = 1 hopping[4*i0+2, 4*i0+3] = 1 return hopping # 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件) @guan.function_decorator def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): import numpy as np import guan on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4) hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1) hopping_2 = np.zeros((4, 4), dtype=complex) hopping_2[3, 0] = 1 hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) return hamiltonian # 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数) @guan.function_decorator def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): import numpy as np constant = -np.sqrt(3)/2 h00 = np.zeros((2, 2), dtype=complex) h00[0, 0] = staggered_potential h00[1, 1] = -staggered_potential h00[0, 1] = -1j*constant*t*np.sin(qy) h00[1, 0] = 1j*constant*t*np.sin(qy) h01 = np.zeros((2, 2), dtype=complex) h01[0, 0] = eta h01[1, 1] = eta if valley_index == 0: h01[0, 1] = constant*t*(-1j/2) h01[1, 0] = constant*t*(-1j/2) else: h01[0, 1] = constant*t*(1j/2) h01[1, 0] = constant*t*(1j/2) return h00, h01 # 获取BHZ模型的在位能和跃迁项 @guan.function_decorator def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): import numpy as np E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((4, 4), dtype=complex) H1 = np.zeros((4, 4), dtype=complex) H2 = np.zeros((4, 4), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H0[2, 2] = E_s H0[3, 3] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[2, 2] = V_ss H1[3, 3] = V_pp H1[0, 1] = V_sp H1[1, 0] = -np.conj(V_sp) H1[2, 3] = np.conj(V_sp) H1[3, 2] = -V_sp H2[0, 0] = V_ss H2[1, 1] = V_pp H2[2, 2] = V_ss H2[3, 3] = V_pp H2[0, 1] = 1j*V_sp H2[1, 0] = 1j*np.conj(V_sp) H2[2, 3] = -1j*np.conj(V_sp) H2[3, 2] = -1j*V_sp return H0, H1, H2 # 获取半个BHZ模型的在位能和跃迁项(自旋向上) @guan.function_decorator def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): import numpy as np E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((2, 2), dtype=complex) H1 = np.zeros((2, 2), dtype=complex) H2 = np.zeros((2, 2), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[0, 1] = V_sp H1[1, 0] = -np.conj(V_sp) H2[0, 0] = V_ss H2[1, 1] = V_pp H2[0, 1] = 1j*V_sp H2[1, 0] = 1j*np.conj(V_sp) return H0, H1, H2 # 获取半个BHZ模型的在位能和跃迁项(自旋向下) @guan.function_decorator def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): import numpy as np E_s = C+M-4*(D+B)/(a**2) E_p = C-M-4*(D-B)/(a**2) V_ss = (D+B)/(a**2) V_pp = (D-B)/(a**2) V_sp = -1j*A/(2*a) H0 = np.zeros((2, 2), dtype=complex) H1 = np.zeros((2, 2), dtype=complex) H2 = np.zeros((2, 2), dtype=complex) H0[0, 0] = E_s H0[1, 1] = E_p H1[0, 0] = V_ss H1[1, 1] = V_pp H1[0, 1] = np.conj(V_sp) H1[1, 0] = -V_sp H2[0, 0] = V_ss H2[1, 1] = V_pp H2[0, 1] = -1j*np.conj(V_sp) H2[1, 0] = -1j*V_sp return H0, H1, H2 # 一维链的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_simple_chain(k): import guan hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) return hamiltonian # 二维方格子的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_square_lattice(k1, k2): import guan hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) return hamiltonian # 准一维方格子条带的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): import numpy as np import guan h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells for i in range(N-1): h00[i, i+1] = 1 h00[i+1, i] = 1 if period == 1: h00[N-1, 0] = 1 h00[0, N-1] = 1 for i in range(N): h01[i, i] = 1 hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) return hamiltonian # 三维立方格子的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_cubic_lattice(k1, k2, k3): import guan hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) return hamiltonian # SSH模型的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_ssh_model(k, v=0.6, w=1): import numpy as np import cmath hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0,1] = v+w*cmath.exp(-1j*k) hamiltonian[1,0] = v+w*cmath.exp(1j*k) return hamiltonian # 石墨烯的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): import numpy as np import cmath import math if a == 'default': a = 1/math.sqrt(3) h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h0[0, 0] = staggered_potential h0[1, 1] = -staggered_potential h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() hamiltonian = h0 + h1 return hamiltonian # 石墨烯有效模型的哈密顿量(倒空间) @guan.function_decorator def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0): import numpy as np hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 0] = staggered_potential hamiltonian[1, 1] = -staggered_potential constant = -np.sqrt(3)/2 if valley_index == 0: hamiltonian[0, 1] = constant*t*(qx-1j*qy) hamiltonian[1, 0] = constant*t*(qx+1j*qy) else: hamiltonian[0, 1] = constant*t*(-qx-1j*qy) hamiltonian[1, 0] = constant*t*(-qx+1j*qy) return hamiltonian # 石墨烯有效模型离散化后的哈密顿量(倒空间) @guan.function_decorator def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0): import numpy as np hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 0] = staggered_potential hamiltonian[1, 1] = -staggered_potential constant = -np.sqrt(3)/2 if valley_index == 0: hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy)) hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy)) else: hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy)) hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy)) return hamiltonian # 准一维Zigzag边石墨烯条带的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): import numpy as np import guan h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t h00[i*4+1, i*4+0] = t h00[i*4+1, i*4+2] = t h00[i*4+2, i*4+1] = t h00[i*4+2, i*4+3] = t h00[i*4+3, i*4+2] = t for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t h00[(i+1)*4+0, i*4+3] = t if period == 1: h00[(N-1)*4+3, 0] = t h00[0, (N-1)*4+3] = t for i in range(N): h01[i*4+1, i*4+0] = t h01[i*4+2, i*4+3] = t hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) return hamiltonian # Haldane模型的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'): import numpy as np import cmath import math if phi == 'default': phi=math.pi/4 if a == 'default': a=1/math.sqrt(3) h0 = np.zeros((2, 2), dtype=complex) # mass term h1 = np.zeros((2, 2), dtype=complex) # nearest hopping h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping h0[0, 0] = M h0[1, 1] = -M h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) h1[0, 1] = h1[1, 0].conj() h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) hamiltonian = h0 + h1 + h2 + h2.transpose().conj() return hamiltonian # 准一维Haldane模型条带的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0): import numpy as np import cmath import math if phi == 'default': phi=math.pi/4 h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): h00[i*4+0, i*4+0] = M h00[i*4+1, i*4+1] = -M h00[i*4+2, i*4+2] = M h00[i*4+3, i*4+3] = -M h00[i*4+0, i*4+1] = t1 h00[i*4+1, i*4+0] = t1 h00[i*4+1, i*4+2] = t1 h00[i*4+2, i*4+1] = t1 h00[i*4+2, i*4+3] = t1 h00[i*4+3, i*4+2] = t1 h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi) h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj() h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi) h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj() for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t1 h00[(i+1)*4+0, i*4+3] = t1 h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi) h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() if period == 1: h00[(N-1)*4+3, 0] = t1 h00[0, (N-1)*4+3] = t1 h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi) h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj() h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi) h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj() for i in range(N): h01[i*4+1, i*4+0] = t1 h01[i*4+2, i*4+3] = t1 h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi) h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi) h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi) h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi) h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi) h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi) if i != 0: h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi) for i in range(N-1): h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) return hamiltonian # 一个量子反常霍尔效应的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): import numpy as np import math hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2) hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2) hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2) hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) return hamiltonian # BHZ模型的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): import numpy as np import math hamiltonian = np.zeros((4, 4), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = np.conj(d1_d2) hamiltonian[1, 0] = d1_d2 hamiltonian[2, 2] = varepsilon+d3 hamiltonian[3, 3] = varepsilon-d3 hamiltonian[2, 3] = -d1_d2 hamiltonian[3, 2] = -np.conj(d1_d2) return hamiltonian # 半BHZ模型的哈密顿量(自旋向上)(倒空间) @guan.function_decorator def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): import numpy as np import math hamiltonian = np.zeros((2, 2), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = np.conj(d1_d2) hamiltonian[1, 0] = d1_d2 return hamiltonian # 半BHZ模型的哈密顿量(自旋向下)(倒空间) @guan.function_decorator def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): import numpy as np import math hamiltonian = np.zeros((2, 2), dtype=complex) varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) hamiltonian[0, 0] = varepsilon+d3 hamiltonian[1, 1] = varepsilon-d3 hamiltonian[0, 1] = -d1_d2 hamiltonian[1, 0] = -np.conj(d1_d2) return hamiltonian # BBH模型的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): import numpy as np import cmath # label of atoms in a unit cell # (2) —— (0) # | | # (1) —— (3) hamiltonian = np.zeros((4, 4), dtype=complex) hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx) hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx) hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky) hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky) hamiltonian[2, 0] = np.conj(hamiltonian[0, 2]) hamiltonian[3, 1] = np.conj(hamiltonian[1, 3]) hamiltonian[3, 0] = np.conj(hamiltonian[0, 3]) hamiltonian[2, 1] = np.conj(hamiltonian[1, 2]) return hamiltonian # Kagome模型的哈密顿量(倒空间) @guan.function_decorator def hamiltonian_of_kagome_lattice(kx, ky, t=1): import numpy as np import math k1_dot_a1 = kx k2_dot_a2 = kx/2+ky*math.sqrt(3)/2 k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2 hamiltonian = np.zeros((3, 3), dtype=complex) hamiltonian[0, 1] = 2*math.cos(k1_dot_a1) hamiltonian[0, 2] = 2*math.cos(k2_dot_a2) hamiltonian[1, 2] = 2*math.cos(k3_dot_a3) hamiltonian = hamiltonian + hamiltonian.transpose().conj() hamiltonian = -t*hamiltonian return hamiltonian