import numpy as np import cmath from math import * import copy # test def test(): print('\nSuccess in the installation of GJH package!\n') # basic functions ## Pauli matrices def sigma_0(): return np.eye(2) def sigma_x(): return np.array([[0, 1],[1, 0]]) def sigma_y(): return np.array([[0, -1j],[1j, 0]]) def sigma_z(): return np.array([[1, 0],[0, -1]]) ## Kronecker product of Pauli matrices def sigma_00(): return np.kron(sigma_0(), sigma_0()) def sigma_0x(): return np.kron(sigma_0(), sigma_x()) def sigma_0y(): return np.kron(sigma_0(), sigma_y()) def sigma_0z(): return np.kron(sigma_0(), sigma_z()) def sigma_x0(): return np.kron(sigma_x(), sigma_0()) def sigma_xx(): return np.kron(sigma_x(), sigma_x()) def sigma_xy(): return np.kron(sigma_x(), sigma_y()) def sigma_xz(): return np.kron(sigma_x(), sigma_z()) def sigma_y0(): return np.kron(sigma_y(), sigma_0()) def sigma_yx(): return np.kron(sigma_y(), sigma_x()) def sigma_yy(): return np.kron(sigma_y(), sigma_y()) def sigma_yz(): return np.kron(sigma_y(), sigma_z()) def sigma_z0(): return np.kron(sigma_z(), sigma_0()) def sigma_zx(): return np.kron(sigma_z(), sigma_x()) def sigma_zy(): return np.kron(sigma_z(), sigma_y()) def sigma_zz(): return np.kron(sigma_z(), sigma_z()) # Hermitian Hamiltonian of tight binding model def finite_size_along_one_direction(N, on_site=0, hopping=1, period=0): on_site = np.array(on_site) hopping = np.array(hopping) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) for i0 in range(N): hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site for i0 in range(N-1): hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() if period == 1: hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() return hamiltonian def finite_size_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() if period_1 == 1: for i2 in range(N2): hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() return hamiltonian def finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): on_site = np.array(on_site) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) if on_site.shape==(): dim = 1 else: dim = on_site.shape[0] hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex) for i1 in range(N1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site for i1 in range(N1-1): for i2 in range(N2): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() for i1 in range(N1): for i2 in range(N2-1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() for i1 in range(N1): for i2 in range(N2): for i3 in range(N3-1): hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() if period_1 == 1: for i2 in range(N2): for i3 in range(N3): hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() if period_2 == 1: for i1 in range(N1): for i3 in range(N3): hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() if period_3 == 1: for i1 in range(N1): for i2 in range(N2): hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() return hamiltonian def one_dimensional_fourier_transform(k, unit_cell, hopping): unit_cell = np.array(unit_cell) hopping = np.array(hopping) hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) return hamiltonian def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) return hamiltonian def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): unit_cell = np.array(unit_cell) hopping_1 = np.array(hopping_1) hopping_2 = np.array(hopping_2) hopping_3 = np.array(hopping_3) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) return hamiltonian # Hamiltonian of graphene lattice def hopping_along_zigzag_direction_for_graphene(N): hopping = np.zeros((4*N, 4*N), dtype=complex) for i0 in range(N): hopping[4*i0+1, 4*i0+0] = 1 hopping[4*i0+2, 4*i0+3] = 1 return hopping def finite_size_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): on_site = finite_size_along_one_direction(4) hopping_1 = hopping_along_zigzag_direction_for_graphene(1) hopping_2 = np.zeros((4, 4), dtype=complex) hopping_2[3, 0] = 1 hamiltonian = finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) return hamiltonian # calculate band structures def calculate_eigenvalue(hamiltonian): if np.array(hamiltonian).shape==(): eigenvalue = np.real(hamiltonian) else: eigenvalue, eigenvector = np.linalg.eig(hamiltonian) eigenvalue = np.sort(np.real(eigenvalue)) return eigenvalue def calculate_eigenvalue_with_one_parameter(x, hamiltonian_function): dim_x = np.array(x).shape[0] i0 = 0 if np.array(hamiltonian_function(0)).shape==(): eigenvalue_array = np.zeros((dim_x, 1)) for x0 in x: hamiltonian = hamiltonian_function(x0) eigenvalue_array[i0, 0] = np.real(hamiltonian) i0 += 1 else: dim = np.array(hamiltonian_function(0)).shape[0] eigenvalue_array = np.zeros((dim_x, dim)) for x0 in x: hamiltonian = hamiltonian_function(x0) eigenvalue, eigenvector = np.linalg.eig(hamiltonian) eigenvalue_array[i0, :] = np.sort(np.real(eigenvalue[:])) i0 += 1 return eigenvalue_array def calculate_eigenvalue_with_two_parameters(x, y, hamiltonian_function): dim_x = np.array(x).shape[0] dim_y = np.array(y).shape[0] if np.array(hamiltonian_function(0,0)).shape==(): eigenvalue_array = np.zeros((dim_y, dim_x, 1)) i0 = 0 for y0 in y: j0 = 0 for x0 in x: hamiltonian = hamiltonian_function(x0, y0) eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) j0 += 1 i0 += 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] eigenvalue_array = np.zeros((dim_y, dim_x, dim)) i0 = 0 for y0 in y: j0 = 0 for x0 in x: hamiltonian = hamiltonian_function(x0, y0) eigenvalue, eigenvector = np.linalg.eig(hamiltonian) eigenvalue_array[i0, j0, :] = np.sort(np.real(eigenvalue[:])) j0 += 1 i0 += 1 return eigenvalue_array # calculate wave functions def calculate_eigenvector(hamiltonian): eigenvalue, eigenvector = np.linalg.eig(hamiltonian) eigenvector = eigenvector[:, np.argsort(np.real(eigenvalue))] return eigenvector # calculate Green functions def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): if np.array(hamiltonian).shape==(): dim = 1 else: dim = np.array(hamiltonian).shape[0] green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) return green def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) return green_nn_n def green_function_in_n(green_in_n_minus, h01, green_nn_n): green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) return green_in_n def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): h01 = np.array(h01) green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) return green_ni_n def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) return green_ii_n # calculate density of states def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): green = green_function(fermi_energy, hamiltonian, broadening) total_dos = -np.trace(np.imag(green))/pi return total_dos def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01): dim = np.array(fermi_energy_array).shape[0] total_dos_array = np.zeros(dim) i0 = 0 for fermi_energy in fermi_energy_array: total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening) i0 += 1 return total_dos_array def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): # dim_hamiltonian = N1*N2*internal_degree green = green_function(fermi_energy, hamiltonian, broadening) local_dos = np.zeros((N2, N1)) for i1 in range(N1): for i2 in range(N2): for i in range(internal_degree): local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi return local_dos def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): # dim_hamiltonian = N1*N2*N3*internal_degree green = green_function(fermi_energy, hamiltonian, broadening) local_dos = np.zeros((N3, N2, N1)) for i1 in range(N1): for i2 in range(N2): for i3 in range(N3): for i in range(internal_degree): local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi return local_dos def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): # dim_h00 = N2*internal_degree local_dos = np.zeros((N2, N1)) green_11_1 = green_function(fermi_energy, h00, broadening) for i1 in range(N1): green_nn_n_minus = green_11_1 green_in_n_minus = green_11_1 green_ni_n_minus = green_11_1 green_ii_n_minus = green_11_1 for i2_0 in range(i1): green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n if i1!=0: green_in_n_minus = green_nn_n green_ni_n_minus = green_nn_n green_ii_n_minus = green_nn_n for size_0 in range(N1-1-i1): green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) green_ii_n_minus = green_ii_n green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) green_in_n_minus = green_in_n green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) green_ni_n_minus = green_ni_n for i2 in range(N2): for i in range(internal_degree): local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi return local_dos def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): # dim_h00 = N2*N3*internal_degree local_dos = np.zeros((N3, N2, N1)) green_11_1 = green_function(fermi_energy, h00, broadening) for i1 in range(N1): green_nn_n_minus = green_11_1 green_in_n_minus = green_11_1 green_ni_n_minus = green_11_1 green_ii_n_minus = green_11_1 for i1_0 in range(i1): green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n if i1!=0: green_in_n_minus = green_nn_n green_ni_n_minus = green_nn_n green_ii_n_minus = green_nn_n for size_0 in range(N1-1-i1): green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) green_nn_n_minus = green_nn_n green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) green_ii_n_minus = green_ii_n green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) green_in_n_minus = green_in_n green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) green_ni_n_minus = green_ni_n for i2 in range(N2): for i3 in range(N3): for i in range(internal_degree): local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi return local_dos # calculate conductance def transfer_matrix(fermi_energy, h00, h01): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transfer = np.zeros((2*dim, 2*dim), dtype=complex) transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) transfer[dim:2*dim, 0:dim] = np.identity(dim) transfer[dim:2*dim, dim:2*dim] = 0 return transfer def surface_green_function_of_lead(fermi_energy, h00, h01): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] fermi_energy = fermi_energy+1e-9*1j transfer = transfer_matrix(fermi_energy, h00, h01) eigenvalue, eigenvector = np.linalg.eig(transfer) ind = np.argsort(np.abs(eigenvalue)) temp = np.zeros((2*dim, 2*dim), dtype=complex) i0 = 0 for ind0 in ind: temp[:, i0] = eigenvector[:, ind0] i0 += 1 s1 = temp[dim:2*dim, 0:dim] s2 = temp[0:dim, 0:dim] s3 = temp[dim:2*dim, dim:2*dim] s4 = temp[0:dim, dim:2*dim] right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) return right_lead_surface, left_lead_surface def self_energy_of_lead(fermi_energy, h00, h01): h01 = np.array(h01) right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) return right_self_energy, left_self_energy def calculate_conductance(fermi_energy, h00, h01, length=100): right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01) for ix in range(length): if ix == 0: green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) green_0n_n = copy.deepcopy(green_nn_n) elif ix != length-1: green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) else: green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*(0+1j) left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*(0+1j) conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) return conductance def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100): dim = np.array(fermi_energy_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for fermi_energy_0 in fermi_energy_array: conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length)) i0 += 1 return conductance_array # calculate scattering matrix def if_active_channel(k_of_channel): if np.abs(np.imag(k_of_channel))<1e-6: if_active = 1 else: if_active = 0 return if_active def get_k_and_velocity_of_channel(fermi_energy, h00, h01): if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transfer = transfer_matrix(fermi_energy, h00, h01) eigenvalue, eigenvector = np.linalg.eig(transfer) k_of_channel = np.log(eigenvalue)/1j ind = np.argsort(np.real(k_of_channel)) k_of_channel = np.sort(k_of_channel) temp = np.zeros((2*dim, 2*dim), dtype=complex) temp2 = np.zeros((2*dim), dtype=complex) i0 = 0 for ind0 in ind: temp[:, i0] = eigenvector[:, ind0] temp2[i0] = eigenvalue[ind0] i0 += 1 eigenvalue = copy.deepcopy(temp2) temp = temp[0:dim, :] factor = np.zeros(2*dim, dtype=complex) for dim0 in range(dim): factor = factor+np.square(np.abs(temp[dim0, :])) for dim0 in range(2*dim): temp[:, dim0] = temp[:, dim0]/np.sqrt(factor[dim0]) velocity_of_channel = np.zeros((2*dim), dtype=complex) for dim0 in range(2*dim): velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] velocity_of_channel = -2*np.imag(velocity_of_channel) eigenvector = copy.deepcopy(temp) return k_of_channel, velocity_of_channel, eigenvalue, eigenvector def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] k_of_channel, velocity_of_channel, eigenvalue, eigenvector = get_k_and_velocity_of_channel(fermi_energy, h00, h01) ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0 k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex) velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex) lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex) u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex) for dim0 in range(2*dim): if_active = if_active_channel(k_of_channel[dim0]) if if_active_channel(k_of_channel[dim0]) == 1: direction = np.sign(velocity_of_channel[dim0]) else: direction = np.sign(np.imag(k_of_channel[dim0])) if direction == 1: if if_active == 1: # right-moving active channel k_right[ind_right_active] = k_of_channel[dim0] velocity_right[ind_right_active] = velocity_of_channel[dim0] lambda_right[ind_right_active] = eigenvalue[dim0] u_right[:, ind_right_active] = eigenvector[:, dim0] ind_right_active += 1 else: # right-moving evanescent channel k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0] velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0] lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0] u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0] ind_right_evanescent += 1 else: if if_active == 1: # left-moving active channel k_left[ind_left_active] = k_of_channel[dim0] velocity_left[ind_left_active] = velocity_of_channel[dim0] lambda_left[ind_left_active] = eigenvalue[dim0] u_left[:, ind_left_active] = eigenvector[:, dim0] ind_left_active += 1 else: # left-moving evanescent channel k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0] velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0] lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0] u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0] ind_left_evanescent += 1 lambda_matrix_right = np.diag(lambda_right) lambda_matrix_left = np.diag(lambda_left) f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) right_self_energy = np.dot(h01, f_right) left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) for i0 in range(length): if i0 == 0: green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) green_00_n = copy.deepcopy(green_nn_n) green_0n_n = copy.deepcopy(green_nn_n) green_n0_n = copy.deepcopy(green_nn_n) elif i0 != length-1: green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) else: green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_00_n = green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) green_n0_n = green_function_ni_n(green_nn_n, h01, green_n0_n) temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right) reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) for dim0 in range(dim): for dim1 in range(dim): if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1]) if if_active == 1: transmission_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] reflection_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] else: transmission_matrix[dim0, dim1] = 0 reflection_matrix[dim0, dim1] = 0 sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) for sum_of_tran_refl in sum_of_tran_refl_array: if sum_of_tran_refl > 1.001: print('Error Alert: scattering matrix is not normalized!') return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_print=1, on_write=0): if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = calculate_scattering_matrix(fermi_energy, h00, h01, length) if on_print == 1: print('\nActive channel (left or right) = ', ind_right_active) print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n') print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active])) print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n') print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active])) print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n') print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n') print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n') if on_write == 1: with open('a.txt', 'w') as f: f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n') f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n') f.write('Channel K Velocity\n') for ind0 in range(ind_right_active): f.write(' '+str(ind0 + 1) + ' | '+str(np.real(k_right[ind0]))+' ' + str(np.real(velocity_right[ind0]))+'\n') f.write('\n') for ind0 in range(ind_right_active): f.write(' -' + str(ind0 + 1) + ' | ' + str(np.real(k_left[ind0])) + ' ' + str(np.real(velocity_left[ind0])) + '\n') f.write('\nScattering matrix:\n ') for ind0 in range(ind_right_active): f.write(str(ind0+1)+' ') f.write('\n') for ind1 in range(ind_right_active): f.write(' '+str(ind1+1)+' ') for ind2 in range(ind_right_active): f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+' ') f.write('\n') f.write('\n') for ind1 in range(ind_right_active): f.write(' -'+str(ind1+1)+' ') for ind2 in range(ind_right_active): f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+' ') f.write('\n') f.write('\n') f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n') f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n') # calculate Chern number def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100): if np.array(hamiltonian_function(0, 0)).shape==(): dim = 1 else: dim = np.array(hamiltonian_function(0, 0)).shape[0] delta = 2*pi/precision chern_number = np.zeros(dim, dtype=complex) for kx in np.arange(-pi, pi, delta): for ky in np.arange(-pi, pi, delta): H = hamiltonian_function(kx, ky) vector = calculate_eigenvector(H) H_delta_kx = hamiltonian_function(kx+delta, ky) vector_delta_kx = calculate_eigenvector(H_delta_kx) H_delta_ky = hamiltonian_function(kx, ky+delta) vector_delta_ky = calculate_eigenvector(H_delta_ky) H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) vector_delta_kx_ky = calculate_eigenvector(H_delta_kx_ky) for i in range(dim): vector_i = vector[:, i] vector_delta_kx_i = vector_delta_kx[:, i] vector_delta_ky_i = vector_delta_ky[:, i] vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) chern_number[i] = chern_number[i] + F chern_number = chern_number/(2*pi*1j) return chern_number # calculate Wilson loop def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100): k_array = np.linspace(k_min, k_max, precision) dim = np.array(hamiltonian_function(0)).shape[0] wilson_loop_array = np.ones(dim, dtype=complex) for i in range(dim): eigenvector_array = [] for k in k_array: eigenvector = calculate_eigenvector(hamiltonian_function(k)) if k != k_max: eigenvector_array.append(eigenvector[:, i]) else: eigenvector_array.append(eigenvector_array[0]) for i0 in range(precision-1): F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) return wilson_loop_array # read and write def read_one_dimensional_data(filename='a'): f = open(filename+'.txt', 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x = np.array([]) y = np.array([]) for row in row_list: column = np.array(row.split()) if column.shape[0] != 0: x = np.append(x, [float(column[0])], axis=0) y_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): y_row[dim0] = float(column[dim0+1]) if np.array(y).shape[0] == 0: y = [y_row] else: y = np.append(y, [y_row], axis=0) return x, y def read_two_dimensional_data(filename='a'): f = open(filename+'.txt', 'r') text = f.read() f.close() row_list = np.array(text.split('\n')) dim_column = np.array(row_list[0].split()).shape[0] x = np.array([]) y = np.array([]) matrix = np.array([]) for i0 in range(row_list.shape[0]): column = np.array(row_list[i0].split()) if i0 == 0: x_str = column[1::] x = np.zeros(x_str.shape[0]) for i00 in range(x_str.shape[0]): x[i00] = float(x_str[i00]) elif column.shape[0] != 0: y = np.append(y, [float(column[0])], axis=0) matrix_row = np.zeros(dim_column-1) for dim0 in range(dim_column-1): matrix_row[dim0] = float(column[dim0+1]) if np.array(matrix).shape[0] == 0: matrix = [matrix_row] else: matrix = np.append(matrix, [matrix_row], axis=0) return x, y, matrix def write_one_dimensional_data(x, y, filename='a'): with open(filename+'.txt', 'w') as f: i0 = 0 for x0 in x: f.write(str(x0)+' ') if len(y.shape) == 1: f.write(str(y[i0])+'\n') elif len(y.shape) == 2: for j0 in range(y.shape[1]): f.write(str(y[i0, j0])+' ') f.write('\n') i0 += 1 def write_two_dimensional_data(x, y, matrix, filename='a'): with open(filename+'.txt', 'w') as f: f.write('0 ') for x0 in x: f.write(str(x0)+' ') f.write('\n') i0 = 0 for y0 in y: f.write(str(y0)) j0 = 0 for x0 in x: f.write(' '+str(matrix[i0, j0])+' ') j0 += 1 f.write('\n') i0 += 1 # plot figures def plot(x, y, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0, type=''): import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.20, left=0.18) ax.plot(x, y, type) ax.grid() ax.set_title(title, fontsize=20, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman') ax.tick_params(labelsize=20) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] if save == 1: plt.savefig(filename+'.jpg', dpi=300) if show == 1: plt.show() plt.close('all') def plot_3d_surface(x, y, matrix, xlabel='x', ylabel='y', zlabel='z', title='', filename='a', show=1, save=0): import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) plt.subplots_adjust(bottom=0.1, right=0.65) x, y = np.meshgrid(x, y) if len(matrix.shape) == 2: surf = ax.plot_surface(x, y, matrix, cmap=cm.coolwarm, linewidth=0, antialiased=False) elif len(matrix.shape) == 3: for i0 in range(matrix.shape[2]): surf = ax.plot_surface(x, y, matrix[:,:,i0], cmap=cm.coolwarm, linewidth=0, antialiased=False) ax.set_title(title, fontsize=20, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman') ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman') ax.zaxis.set_major_locator(LinearLocator(5)) ax.zaxis.set_major_formatter('{x:.2f}') ax.tick_params(labelsize=15) labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.80, 0.15, 0.05, 0.75]) cbar = fig.colorbar(surf, cax=cax) cbar.ax.tick_params(labelsize=15) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+'.jpg', dpi=300) if show == 1: plt.show() plt.close('all') def plot_contour(x, y, matrix, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0): import matplotlib.pyplot as plt fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16) x, y = np.meshgrid(x, y) contour = ax.contourf(x,y,matrix,cmap='jet') ax.set_title(title, fontsize=20, fontfamily='Times New Roman') ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman') ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman') ax.tick_params(labelsize=15) labels = ax.get_xticklabels() + ax.get_yticklabels() [label.set_fontname('Times New Roman') for label in labels] cax = plt.axes([0.78, 0.17, 0.08, 0.71]) cbar = fig.colorbar(contour, cax=cax) cbar.ax.tick_params(labelsize=15) for l in cbar.ax.yaxis.get_ticklabels(): l.set_family('Times New Roman') if save == 1: plt.savefig(filename+'.jpg', dpi=300) if show == 1: plt.show() plt.close('all')