274 lines
11 KiB
Python
274 lines
11 KiB
Python
# Module: band_structures_and_wave_functions
|
|
|
|
# 计算哈密顿量的本征值
|
|
def calculate_eigenvalue(hamiltonian):
|
|
import numpy as np
|
|
if np.array(hamiltonian).shape==():
|
|
eigenvalue = np.real(hamiltonian)
|
|
else:
|
|
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
return eigenvalue
|
|
|
|
# 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组
|
|
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
|
|
import numpy as np
|
|
dim_x = np.array(x_array).shape[0]
|
|
i0 = 0
|
|
if np.array(hamiltonian_function(0)).shape==():
|
|
eigenvalue_array = np.zeros((dim_x, 1))
|
|
for x0 in x_array:
|
|
hamiltonian = hamiltonian_function(x0)
|
|
eigenvalue_array[i0, 0] = np.real(hamiltonian)
|
|
i0 += 1
|
|
else:
|
|
dim = np.array(hamiltonian_function(0)).shape[0]
|
|
eigenvalue_array = np.zeros((dim_x, dim))
|
|
for x0 in x_array:
|
|
if print_show==1:
|
|
print(x0)
|
|
hamiltonian = hamiltonian_function(x0)
|
|
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
eigenvalue_array[i0, :] = eigenvalue
|
|
i0 += 1
|
|
return eigenvalue_array
|
|
|
|
# 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组
|
|
def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):
|
|
import numpy as np
|
|
dim_x = np.array(x_array).shape[0]
|
|
dim_y = np.array(y_array).shape[0]
|
|
if np.array(hamiltonian_function(0,0)).shape==():
|
|
eigenvalue_array = np.zeros((dim_y, dim_x, 1))
|
|
i0 = 0
|
|
for y0 in y_array:
|
|
j0 = 0
|
|
for x0 in x_array:
|
|
hamiltonian = hamiltonian_function(x0, y0)
|
|
eigenvalue_array[i0, j0, 0] = np.real(hamiltonian)
|
|
j0 += 1
|
|
i0 += 1
|
|
else:
|
|
dim = np.array(hamiltonian_function(0, 0)).shape[0]
|
|
eigenvalue_array = np.zeros((dim_y, dim_x, dim))
|
|
i0 = 0
|
|
for y0 in y_array:
|
|
j0 = 0
|
|
if print_show==1:
|
|
print(y0)
|
|
for x0 in x_array:
|
|
if print_show_more==1:
|
|
print(x0)
|
|
hamiltonian = hamiltonian_function(x0, y0)
|
|
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
eigenvalue_array[i0, j0, :] = eigenvalue
|
|
j0 += 1
|
|
i0 += 1
|
|
return eigenvalue_array
|
|
|
|
# 计算哈密顿量的本征矢(厄密矩阵)
|
|
def calculate_eigenvector(hamiltonian):
|
|
import numpy as np
|
|
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
return eigenvector
|
|
|
|
# 施密特正交化
|
|
def schmidt_orthogonalization(eigenvector):
|
|
import numpy as np
|
|
num = eigenvector.shape[1]
|
|
for i in range(num):
|
|
for i0 in range(i):
|
|
eigenvector[:, i] = eigenvector[:, i] - eigenvector[:, i0]*np.dot(eigenvector[:, i].transpose().conj(), eigenvector[:, i0])/(np.dot(eigenvector[:, i0].transpose().conj(),eigenvector[:, i0]))
|
|
eigenvector[:, i] = eigenvector[:, i]/np.linalg.norm(eigenvector[:, i])
|
|
return eigenvector
|
|
|
|
# 通过QR分解正交化
|
|
def orthogonalization_with_qr(eigenvector):
|
|
import numpy as np
|
|
Q, R = np.linalg.qr(eigenvector)
|
|
return Q
|
|
|
|
# 通过SVD正交化
|
|
def orthogonalization_with_svd(eigenvector):
|
|
import numpy as np
|
|
U, sigma, VT = np.linalg.svd(eigenvector)
|
|
return U
|
|
|
|
# 通过scipy.linalg.orth正交化
|
|
def orthogonalization_with_scipy_linalg_orth(eigenvector):
|
|
import scipy
|
|
Q = scipy.linalg.orth(eigenvector)
|
|
return Q
|
|
|
|
# 验证是否正交
|
|
def verify_orthogonality(eigenvector):
|
|
import numpy as np
|
|
identity = np.eye(eigenvector.shape[1])
|
|
product = np.dot(eigenvector.transpose().conj(), eigenvector)
|
|
return np.allclose(product, identity)
|
|
|
|
# 通过二分查找的方法获取和相邻波函数一样规范的波函数
|
|
def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6):
|
|
import numpy as np
|
|
import cmath
|
|
phase_1_pre = 0
|
|
phase_2_pre = np.pi
|
|
for i0 in range(n_test):
|
|
test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref))
|
|
test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref))
|
|
if test_1 < precision:
|
|
phase = phase_1_pre
|
|
if show_times==1:
|
|
print('Binary search times=', i0)
|
|
break
|
|
if i0 == n_test-1:
|
|
phase = phase_1_pre
|
|
if show_error==1:
|
|
print('Gauge not found with binary search times=', i0)
|
|
if test_1 < test_2:
|
|
if i0 == 0:
|
|
phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2
|
|
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
|
else:
|
|
phase_1 = phase_1_pre
|
|
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
|
else:
|
|
if i0 == 0:
|
|
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
|
phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2
|
|
else:
|
|
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
|
phase_2 = phase_2_pre
|
|
phase_1_pre = phase_1
|
|
phase_2_pre = phase_2
|
|
vector_target = vector_target*cmath.exp(1j*phase)
|
|
if show_phase==1:
|
|
print('Phase=', phase)
|
|
return vector_target
|
|
|
|
# 通过乘一个相反的相位角,实现波函数的一个非零分量为实数,从而得到固定规范的波函数
|
|
def find_vector_with_fixed_gauge_by_making_one_component_real(vector, index=None):
|
|
import numpy as np
|
|
import cmath
|
|
vector = np.array(vector)
|
|
if index == None:
|
|
index = np.argmax(np.abs(vector))
|
|
angle = cmath.phase(vector[index])
|
|
vector = vector*cmath.exp(-1j*angle)
|
|
return vector
|
|
|
|
# 通过乘一个相反的相位角,实现波函数的一个非零分量为实数,从而得到固定规范的波函数(在一组波函数中选取最大的那个分量)
|
|
def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array):
|
|
import numpy as np
|
|
import guan
|
|
vector_sum = 0
|
|
Num_k = np.array(vector_array).shape[0]
|
|
for i0 in range(Num_k):
|
|
vector_sum += np.abs(vector_array[i0])
|
|
index = np.argmax(np.abs(vector_sum))
|
|
for i0 in range(Num_k):
|
|
vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], index=index)
|
|
return vector_array
|
|
|
|
# 循环查找规范使得波函数的一个非零分量为实数,得到固定规范的波函数
|
|
def loop_find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None):
|
|
import numpy as np
|
|
import cmath
|
|
vector = np.array(vector)
|
|
if index == None:
|
|
index = np.argmax(np.abs(vector))
|
|
sign_pre = np.sign(np.imag(vector[index]))
|
|
for phase in np.arange(0, 2*np.pi, precision):
|
|
sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase)))
|
|
if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre:
|
|
break
|
|
sign_pre = sign
|
|
vector = vector*cmath.exp(1j*phase)
|
|
if np.real(vector[index]) < 0:
|
|
vector = -vector
|
|
return vector
|
|
|
|
# 循环查找规范使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量)
|
|
def loop_find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005):
|
|
import numpy as np
|
|
import guan
|
|
vector_sum = 0
|
|
Num_k = np.array(vector_array).shape[0]
|
|
for i0 in range(Num_k):
|
|
vector_sum += np.abs(vector_array[i0])
|
|
index = np.argmax(np.abs(vector_sum))
|
|
for i0 in range(Num_k):
|
|
vector_array[i0] = guan.loop_find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index)
|
|
return vector_array
|
|
|
|
# 旋转两个简并的波函数(说明:参数比较多,算法效率不高)
|
|
def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0):
|
|
import numpy as np
|
|
import math
|
|
import cmath
|
|
vector1 = np.array(vector1)
|
|
vector2 = np.array(vector2)
|
|
if index1 == None:
|
|
index1 = np.argmax(np.abs(vector1))
|
|
if index2 == None:
|
|
index2 = np.argmax(np.abs(vector2))
|
|
if np.abs(vector1[index2])>criterion or np.abs(vector2[index1])>criterion:
|
|
for theta in np.arange(0, 2*math.pi, precision):
|
|
if show_theta==1:
|
|
print(theta)
|
|
for phi1 in np.arange(0, 2*math.pi, precision):
|
|
for phi2 in np.arange(0, 2*math.pi, precision):
|
|
vector1_test = cmath.exp(1j*phi1)*vector1*math.cos(theta)+cmath.exp(1j*phi2)*vector2*math.sin(theta)
|
|
vector2_test = -cmath.exp(-1j*phi2)*vector1*math.sin(theta)+cmath.exp(-1j*phi1)*vector2*math.cos(theta)
|
|
if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion:
|
|
vector1 = vector1_test
|
|
vector2 = vector2_test
|
|
break
|
|
if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion:
|
|
break
|
|
if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion:
|
|
break
|
|
return vector1, vector2
|
|
|
|
# 旋转两个简并的波函数向量组(说明:参数比较多,算法效率不高)
|
|
def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0):
|
|
import numpy as np
|
|
import guan
|
|
Num_k = np.array(vector1_array).shape[0]
|
|
vector1_sum = 0
|
|
for i0 in range(Num_k):
|
|
vector1_sum += np.abs(vector1_array[i0])
|
|
index1 = np.argmax(np.abs(vector1_sum))
|
|
vector2_sum = 0
|
|
for i0 in range(Num_k):
|
|
vector2_sum += np.abs(vector2_array[i0])
|
|
index2 = np.argmax(np.abs(vector2_sum))
|
|
for i0 in range(Num_k):
|
|
vector1_array[i0], vector2_array[i0] = guan.rotation_of_degenerate_vectors(vector1=vector1_array[i0], vector2=vector2_array[i0], index1=index1, index2=index2, precision=precision, criterion=criterion, show_theta=show_theta)
|
|
return vector1_array, vector2_array
|
|
|
|
# 在一组数据中找到数值相近的数
|
|
def find_close_values_in_one_array(array, precision=1e-2):
|
|
new_array = []
|
|
i0 = 0
|
|
for a1 in array:
|
|
j0 = 0
|
|
for a2 in array:
|
|
if j0>i0 and abs(a1-a2)<precision:
|
|
new_array.append([a1, a2])
|
|
j0 +=1
|
|
i0 += 1
|
|
return new_array
|
|
|
|
# 寻找能带的简并点
|
|
def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2):
|
|
import guan
|
|
degenerate_k_array = []
|
|
degenerate_eigenvalue_array = []
|
|
i0 = 0
|
|
for k in k_array:
|
|
degenerate_points = guan.find_close_values_in_one_array(eigenvalue_array[i0], precision=precision)
|
|
if len(degenerate_points) != 0:
|
|
degenerate_k_array.append(k)
|
|
degenerate_eigenvalue_array.append(degenerate_points)
|
|
i0 += 1
|
|
return degenerate_k_array, degenerate_eigenvalue_array |