88 lines
5.2 KiB
Python
88 lines
5.2 KiB
Python
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
|
|
# calculate conductance
|
|
|
|
import numpy as np
|
|
import copy
|
|
from .calculate_Green_functions import *
|
|
|
|
def calculate_conductance(fermi_energy, h00, h01, length=100):
|
|
right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01)
|
|
for ix in range(length):
|
|
if ix == 0:
|
|
green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
|
green_0n_n = copy.deepcopy(green_nn_n)
|
|
elif ix != length-1:
|
|
green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
|
green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
else:
|
|
green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
|
green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*1j
|
|
left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*1j
|
|
conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj()))
|
|
return conductance
|
|
|
|
def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100):
|
|
dim = np.array(fermi_energy_array).shape[0]
|
|
conductance_array = np.zeros(dim)
|
|
i0 = 0
|
|
for fermi_energy_0 in fermi_energy_array:
|
|
conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length))
|
|
i0 += 1
|
|
return conductance_array
|
|
|
|
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
|
right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01)
|
|
dim = np.array(h00).shape[0]
|
|
for ix in range(length):
|
|
disorder = np.zeros((dim, dim))
|
|
for dim0 in range(dim):
|
|
if np.random.uniform(0, 1)<=disorder_concentration:
|
|
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
|
|
if ix == 0:
|
|
green_nn_n = green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy)
|
|
green_0n_n = copy.deepcopy(green_nn_n)
|
|
elif ix != length-1:
|
|
green_nn_n = green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
|
|
green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
else:
|
|
green_nn_n = green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
|
green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*1j
|
|
left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*1j
|
|
conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj()))
|
|
return conductance
|
|
|
|
def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1):
|
|
dim = np.array(disorder_intensity_array).shape[0]
|
|
conductance_array = np.zeros(dim)
|
|
i0 = 0
|
|
for disorder_intensity_0 in disorder_intensity_array:
|
|
for times in range(calculation_times):
|
|
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity_0, disorder_concentration=disorder_concentration, length=length))
|
|
i0 += 1
|
|
conductance_array = conductance_array/calculation_times
|
|
return conductance_array
|
|
|
|
def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1):
|
|
dim = np.array(disorder_concentration_array).shape[0]
|
|
conductance_array = np.zeros(dim)
|
|
i0 = 0
|
|
for disorder_concentration_0 in disorder_concentration_array:
|
|
for times in range(calculation_times):
|
|
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration_0, length=length))
|
|
i0 += 1
|
|
conductance_array = conductance_array/calculation_times
|
|
return conductance_array
|
|
|
|
def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1):
|
|
dim = np.array(length_array).shape[0]
|
|
conductance_array = np.zeros(dim)
|
|
i0 = 0
|
|
for length_0 in length_array:
|
|
for times in range(calculation_times):
|
|
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length_0))
|
|
i0 += 1
|
|
conductance_array = conductance_array/calculation_times
|
|
return conductance_array |