315 lines
12 KiB
Python
315 lines
12 KiB
Python
# Module: Hamiltonian_of_models_in_reciprocal_space
|
||
|
||
# 一维链的哈密顿量
|
||
def hamiltonian_of_simple_chain(k):
|
||
import guan
|
||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 二维方格子的哈密顿量
|
||
def hamiltonian_of_square_lattice(k1, k2):
|
||
import guan
|
||
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 准一维方格子条带的哈密顿量
|
||
def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
|
||
import numpy as np
|
||
import guan
|
||
h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
|
||
h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
|
||
for i in range(N-1):
|
||
h00[i, i+1] = 1
|
||
h00[i+1, i] = 1
|
||
if period == 1:
|
||
h00[N-1, 0] = 1
|
||
h00[0, N-1] = 1
|
||
for i in range(N):
|
||
h01[i, i] = 1
|
||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 三维立方格子的哈密顿量
|
||
def hamiltonian_of_cubic_lattice(k1, k2, k3):
|
||
import guan
|
||
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# SSH模型的哈密顿量
|
||
def hamiltonian_of_ssh_model(k, v=0.6, w=1):
|
||
import numpy as np
|
||
import cmath
|
||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||
hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
|
||
hamiltonian[1,0] = v+w*cmath.exp(1j*k)
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 石墨烯的哈密顿量
|
||
def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
|
||
import numpy as np
|
||
import cmath
|
||
import math
|
||
if a == 'default':
|
||
a = 1/math.sqrt(3)
|
||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
||
h0[0, 0] = staggered_potential
|
||
h0[1, 1] = -staggered_potential
|
||
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
|
||
h1[0, 1] = h1[1, 0].conj()
|
||
hamiltonian = h0 + h1
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 石墨烯有效模型的哈密顿量
|
||
def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
|
||
import numpy as np
|
||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||
hamiltonian[0, 0] = staggered_potential
|
||
hamiltonian[1, 1] = -staggered_potential
|
||
constant = -np.sqrt(3)/2
|
||
if valley_index == 0:
|
||
hamiltonian[0, 1] = constant*t*(qx-1j*qy)
|
||
hamiltonian[1, 0] = constant*t*(qx+1j*qy)
|
||
else:
|
||
hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
|
||
hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 石墨烯有效模型离散化后的哈密顿量
|
||
def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
|
||
import numpy as np
|
||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||
hamiltonian[0, 0] = staggered_potential
|
||
hamiltonian[1, 1] = -staggered_potential
|
||
constant = -np.sqrt(3)/2
|
||
if valley_index == 0:
|
||
hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy))
|
||
hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy))
|
||
else:
|
||
hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
|
||
hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 准一维Zigzag边石墨烯条带的哈密顿量
|
||
def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
|
||
import numpy as np
|
||
import guan
|
||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
||
for i in range(N):
|
||
h00[i*4+0, i*4+0] = M
|
||
h00[i*4+1, i*4+1] = -M
|
||
h00[i*4+2, i*4+2] = M
|
||
h00[i*4+3, i*4+3] = -M
|
||
h00[i*4+0, i*4+1] = t
|
||
h00[i*4+1, i*4+0] = t
|
||
h00[i*4+1, i*4+2] = t
|
||
h00[i*4+2, i*4+1] = t
|
||
h00[i*4+2, i*4+3] = t
|
||
h00[i*4+3, i*4+2] = t
|
||
for i in range(N-1):
|
||
h00[i*4+3, (i+1)*4+0] = t
|
||
h00[(i+1)*4+0, i*4+3] = t
|
||
if period == 1:
|
||
h00[(N-1)*4+3, 0] = t
|
||
h00[0, (N-1)*4+3] = t
|
||
for i in range(N):
|
||
h01[i*4+1, i*4+0] = t
|
||
h01[i*4+2, i*4+3] = t
|
||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# Haldane模型的哈密顿量
|
||
def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'):
|
||
import numpy as np
|
||
import cmath
|
||
import math
|
||
if phi == 'default':
|
||
phi=math.pi/4
|
||
if a == 'default':
|
||
a=1/math.sqrt(3)
|
||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
||
h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
|
||
h0[0, 0] = M
|
||
h0[1, 1] = -M
|
||
h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
|
||
h1[0, 1] = h1[1, 0].conj()
|
||
h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
||
h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
||
hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 准一维Haldane模型条带的哈密顿量
|
||
def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0):
|
||
import numpy as np
|
||
import cmath
|
||
import math
|
||
if phi == 'default':
|
||
phi=math.pi/4
|
||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
||
for i in range(N):
|
||
h00[i*4+0, i*4+0] = M
|
||
h00[i*4+1, i*4+1] = -M
|
||
h00[i*4+2, i*4+2] = M
|
||
h00[i*4+3, i*4+3] = -M
|
||
h00[i*4+0, i*4+1] = t1
|
||
h00[i*4+1, i*4+0] = t1
|
||
h00[i*4+1, i*4+2] = t1
|
||
h00[i*4+2, i*4+1] = t1
|
||
h00[i*4+2, i*4+3] = t1
|
||
h00[i*4+3, i*4+2] = t1
|
||
h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
|
||
h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
|
||
h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
|
||
h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
|
||
for i in range(N-1):
|
||
h00[i*4+3, (i+1)*4+0] = t1
|
||
h00[(i+1)*4+0, i*4+3] = t1
|
||
h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
|
||
h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
|
||
h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
|
||
h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
|
||
if period == 1:
|
||
h00[(N-1)*4+3, 0] = t1
|
||
h00[0, (N-1)*4+3] = t1
|
||
h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi)
|
||
h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj()
|
||
h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi)
|
||
h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj()
|
||
for i in range(N):
|
||
h01[i*4+1, i*4+0] = t1
|
||
h01[i*4+2, i*4+3] = t1
|
||
h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
|
||
h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
|
||
h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
|
||
h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
|
||
h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
|
||
h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
|
||
if i != 0:
|
||
h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
|
||
for i in range(N-1):
|
||
h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
|
||
hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 一个量子反常霍尔效应的哈密顿量
|
||
def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
|
||
import numpy as np
|
||
import math
|
||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||
hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2)
|
||
hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
|
||
hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
|
||
hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# BHZ模型的哈密顿量
|
||
def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||
import numpy as np
|
||
import math
|
||
hamiltonian = np.zeros((4, 4), dtype=complex)
|
||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||
hamiltonian[0, 0] = varepsilon+d3
|
||
hamiltonian[1, 1] = varepsilon-d3
|
||
hamiltonian[0, 1] = np.conj(d1_d2)
|
||
hamiltonian[1, 0] = d1_d2
|
||
hamiltonian[2, 2] = varepsilon+d3
|
||
hamiltonian[3, 3] = varepsilon-d3
|
||
hamiltonian[2, 3] = -d1_d2
|
||
hamiltonian[3, 2] = -np.conj(d1_d2)
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 半BHZ模型的哈密顿量(自旋向上)
|
||
def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||
import numpy as np
|
||
import math
|
||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||
hamiltonian[0, 0] = varepsilon+d3
|
||
hamiltonian[1, 1] = varepsilon-d3
|
||
hamiltonian[0, 1] = np.conj(d1_d2)
|
||
hamiltonian[1, 0] = d1_d2
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# 半BHZ模型的哈密顿量(自旋向下)
|
||
def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||
import numpy as np
|
||
import math
|
||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||
hamiltonian[0, 0] = varepsilon+d3
|
||
hamiltonian[1, 1] = varepsilon-d3
|
||
hamiltonian[0, 1] = -d1_d2
|
||
hamiltonian[1, 0] = -np.conj(d1_d2)
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# BBH模型的哈密顿量
|
||
def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
|
||
import numpy as np
|
||
import cmath
|
||
# label of atoms in a unit cell
|
||
# (2) —— (0)
|
||
# | |
|
||
# (1) —— (3)
|
||
hamiltonian = np.zeros((4, 4), dtype=complex)
|
||
hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
|
||
hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
|
||
hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
|
||
hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
|
||
hamiltonian[2, 0] = np.conj(hamiltonian[0, 2])
|
||
hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
|
||
hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
|
||
hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian
|
||
|
||
# Kagome模型的哈密顿量
|
||
def hamiltonian_of_kagome_lattice(kx, ky, t=1):
|
||
import numpy as np
|
||
import math
|
||
k1_dot_a1 = kx
|
||
k2_dot_a2 = kx/2+ky*math.sqrt(3)/2
|
||
k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2
|
||
hamiltonian = np.zeros((3, 3), dtype=complex)
|
||
hamiltonian[0, 1] = 2*math.cos(k1_dot_a1)
|
||
hamiltonian[0, 2] = 2*math.cos(k2_dot_a2)
|
||
hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
|
||
hamiltonian = hamiltonian + hamiltonian.transpose().conj()
|
||
hamiltonian = -t*hamiltonian
|
||
import guan
|
||
guan.statistics_of_guan_package()
|
||
return hamiltonian |