py.guanjihuan.com/PyPI/src/guan/calculate_topological_invariant.py
2021-12-16 16:52:13 +08:00

56 lines
2.9 KiB
Python

# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
# calculate topological invariant
import numpy as np
import cmath
from math import *
from .calculate_band_structures_and_wave_functions import *
def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100):
if np.array(hamiltonian_function(0, 0)).shape==():
dim = 1
else:
dim = np.array(hamiltonian_function(0, 0)).shape[0]
delta = 2*pi/precision
chern_number = np.zeros(dim, dtype=complex)
for kx in np.arange(-pi, pi, delta):
for ky in np.arange(-pi, pi, delta):
H = hamiltonian_function(kx, ky)
vector = calculate_eigenvector(H)
H_delta_kx = hamiltonian_function(kx+delta, ky)
vector_delta_kx = calculate_eigenvector(H_delta_kx)
H_delta_ky = hamiltonian_function(kx, ky+delta)
vector_delta_ky = calculate_eigenvector(H_delta_ky)
H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
vector_delta_kx_ky = calculate_eigenvector(H_delta_kx_ky)
for i in range(dim):
vector_i = vector[:, i]
vector_delta_kx_i = vector_delta_kx[:, i]
vector_delta_ky_i = vector_delta_ky[:, i]
vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
chern_number[i] = chern_number[i] + F
chern_number = chern_number/(2*pi*1j)
return chern_number
def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100):
k_array = np.linspace(k_min, k_max, precision)
dim = np.array(hamiltonian_function(0)).shape[0]
wilson_loop_array = np.ones(dim, dtype=complex)
for i in range(dim):
eigenvector_array = []
for k in k_array:
eigenvector = calculate_eigenvector(hamiltonian_function(k))
if k != k_max:
eigenvector_array.append(eigenvector[:, i])
else:
eigenvector_array.append(eigenvector_array[0])
for i0 in range(precision-1):
F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0])
wilson_loop_array[i] = np.dot(F, wilson_loop_array[i])
return wilson_loop_array