py.guanjihuan.com/PyPI/src/guan/calculate_density_of_states.py

139 lines
7.2 KiB
Python

# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
# calculate density of states
import numpy as np
from math import *
import guan
def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01):
green = guan.green_function(fermi_energy, hamiltonian, broadening)
total_dos = -np.trace(np.imag(green))/pi
return total_dos
def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01):
dim = np.array(fermi_energy_array).shape[0]
total_dos_array = np.zeros(dim)
i0 = 0
for fermi_energy in fermi_energy_array:
total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening)
i0 += 1
return total_dos_array
def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01):
# dim_hamiltonian = N1*N2*internal_degree
green = guan.green_function(fermi_energy, hamiltonian, broadening)
local_dos = np.zeros((N2, N1))
for i1 in range(N1):
for i2 in range(N2):
for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi
return local_dos
def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01):
# dim_hamiltonian = N1*N2*N3*internal_degree
green = guan.green_function(fermi_energy, hamiltonian, broadening)
local_dos = np.zeros((N3, N2, N1))
for i1 in range(N1):
for i2 in range(N2):
for i3 in range(N3):
for i in range(internal_degree):
local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi
return local_dos
def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01):
# dim_h00 = N2*internal_degree
local_dos = np.zeros((N2, N1))
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
for i1 in range(N1):
green_nn_n_minus = green_11_1
green_in_n_minus = green_11_1
green_ni_n_minus = green_11_1
green_ii_n_minus = green_11_1
for i2_0 in range(i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
if i1!=0:
green_in_n_minus = green_nn_n
green_ni_n_minus = green_nn_n
green_ii_n_minus = green_nn_n
for size_0 in range(N1-1-i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
green_ii_n_minus = green_ii_n
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
green_in_n_minus = green_in_n
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
green_ni_n_minus = green_ni_n
for i2 in range(N2):
for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi
return local_dos
def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01):
# dim_h00 = N2*N3*internal_degree
local_dos = np.zeros((N3, N2, N1))
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
for i1 in range(N1):
green_nn_n_minus = green_11_1
green_in_n_minus = green_11_1
green_ni_n_minus = green_11_1
green_ii_n_minus = green_11_1
for i1_0 in range(i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
if i1!=0:
green_in_n_minus = green_nn_n
green_ni_n_minus = green_nn_n
green_ii_n_minus = green_nn_n
for size_0 in range(N1-1-i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
green_ii_n_minus = green_ii_n
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
green_in_n_minus = green_in_n
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
green_ni_n_minus = green_ni_n
for i2 in range(N2):
for i3 in range(N3):
for i in range(internal_degree):
local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi
return local_dos
def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01):
# dim_h00 = N2*internal_degree
local_dos = np.zeros((N2, N1))
green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening)
for i1 in range(N1):
green_nn_n_minus = green_11_1
green_in_n_minus = green_11_1
green_ni_n_minus = green_11_1
green_ii_n_minus = green_11_1
for i2_0 in range(i1):
if i2_0 == N1-1-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
if i1!=0:
green_in_n_minus = green_nn_n
green_ni_n_minus = green_nn_n
green_ii_n_minus = green_nn_n
for size_0 in range(N1-1-i1):
if size_0 == N1-1-i1-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
green_ii_n_minus = green_ii_n
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
green_in_n_minus = green_in_n
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
green_ni_n_minus = green_ni_n
for i2 in range(N2):
for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi
return local_dos