py.guanjihuan.com/PyPI/src/guan/quantum_transport.py

600 lines
39 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Module: quantum_transport
import guan
# 计算电导
@guan.function_decorator
def calculate_conductance(fermi_energy, h00, h01, length=100):
import numpy as np
import copy
import guan
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
for ix in range(length):
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif ix != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
# 计算不同费米能下的电导
@guan.function_decorator
def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0):
import numpy as np
import guan
dim = np.array(fermi_energy_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for fermi_energy in fermi_energy_array:
conductance_array[i0] = np.real(guan.calculate_conductance(fermi_energy, h00, h01, length))
if print_show == 1:
print(fermi_energy, conductance_array[i0])
i0 += 1
return conductance_array
# 计算在势垒散射下的电导
@guan.function_decorator
def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1):
import numpy as np
import copy
import guan
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
dim = np.array(h00).shape[0]
for ix in range(length):
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif int(length/2-barrier_length/2)<=ix<int(length/2+barrier_length/2):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+barrier_potential*np.identity(dim), h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
elif ix != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
# 计算在无序散射下的电导
@guan.function_decorator
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1):
import numpy as np
import copy
import guan
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
dim = np.array(h00).shape[0]
conductance_averaged = 0
for times in range(calculation_times):
for ix in range(length+2):
disorder = np.zeros((dim, dim))
for dim0 in range(dim):
if np.random.uniform(0, 1)<=disorder_concentration:
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif ix != length+1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
conductance_averaged += conductance
conductance_averaged = conductance_averaged/calculation_times
return conductance_averaged
# 计算在无序垂直切片的散射下的电导
@guan.function_decorator
def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
import numpy as np
import copy
import guan
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
dim = np.array(h00).shape[0]
for ix in range(length+2):
disorder = np.zeros((dim, dim))
if np.random.uniform(0, 1)<=disorder_concentration:
disorder = np.random.uniform(-disorder_intensity, disorder_intensity)*np.eye(dim)
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif ix != length+1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
# 计算在无序水平切片的散射下的电导
@guan.function_decorator
def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
import numpy as np
import copy
import guan
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
dim = np.array(h00).shape[0]
disorder = np.zeros((dim, dim))
for dim0 in range(dim):
if np.random.uniform(0, 1)<=disorder_concentration:
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
for ix in range(length+2):
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif ix != length+1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
# 计算在随机空位的散射下的电导
@guan.function_decorator
def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100):
import numpy as np
import copy
import guan
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
dim = np.array(h00).shape[0]
for ix in range(length+2):
random_vacancy = np.zeros((dim, dim))
for dim0 in range(dim):
if np.random.uniform(0, 1)<=vacancy_concentration:
random_vacancy[dim0, dim0] = vacancy_potential
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif ix != length+1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+random_vacancy, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
# 计算在不同无序散射强度下的电导
@guan.function_decorator
def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0):
import numpy as np
import guan
dim = np.array(disorder_intensity_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for disorder_intensity in disorder_intensity_array:
for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
if print_show == 1:
print(disorder_intensity, conductance_array[i0]/calculation_times)
i0 += 1
conductance_array = conductance_array/calculation_times
return conductance_array
# 计算在不同无序浓度下的电导
@guan.function_decorator
def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0):
import numpy as np
import guan
dim = np.array(disorder_concentration_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for disorder_concentration in disorder_concentration_array:
for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
if print_show == 1:
print(disorder_concentration, conductance_array[i0]/calculation_times)
i0 += 1
conductance_array = conductance_array/calculation_times
return conductance_array
# 计算在不同无序散射长度下的电导
@guan.function_decorator
def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0):
import numpy as np
import guan
dim = np.array(length_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for length in length_array:
for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
if print_show == 1:
print(length, conductance_array[i0]/calculation_times)
i0 += 1
conductance_array = conductance_array/calculation_times
return conductance_array
# 计算得到Gamma矩阵和格林函数用于计算六端口的量子输运
@guan.function_decorator
def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
import numpy as np
import guan
# ---------------- Geometry ----------------
# lead2 lead3
# lead1(L) lead4(R)
# lead6 lead5
h00_for_lead_1 = h00_for_lead_4
h00_for_lead_2 = h00_for_lead_2
h00_for_lead_3 = h00_for_lead_2
h00_for_lead_5 = h00_for_lead_2
h00_for_lead_6 = h00_for_lead_2
h00_for_lead_4 = h00_for_lead_4
h01_for_lead_1 = h01_for_lead_4.transpose().conj()
h01_for_lead_2 = h01_for_lead_2
h01_for_lead_3 = h01_for_lead_2
h01_for_lead_4 = h01_for_lead_4
h01_for_lead_5 = h01_for_lead_2.transpose().conj()
h01_for_lead_6 = h01_for_lead_2.transpose().conj()
h_lead1_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead2_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead3_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead4_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead5_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead6_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
move = moving_step_of_leads # the step of leads 2,3,6,5 moving to center
h_lead1_to_center[0:internal_degree*width, 0:internal_degree*width] = h01_for_lead_1.transpose().conj()
h_lead4_to_center[0:internal_degree*width, internal_degree*width*(length-1):internal_degree*width*length] = h01_for_lead_4.transpose().conj()
for i0 in range(width):
begin_index = internal_degree*i0+0
end_index = internal_degree*i0+internal_degree
h_lead2_to_center[begin_index:end_index, internal_degree*(width*(move+i0)+(width-1))+0:internal_degree*(width*(move+i0)+(width-1))+internal_degree] = h01_for_lead_2.transpose().conj()[begin_index:end_index, begin_index:end_index]
h_lead3_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+(width-1))+0:internal_degree*(width*(length-move-1-i0)+(width-1))+internal_degree] = h01_for_lead_3.transpose().conj()[begin_index:end_index, begin_index:end_index]
h_lead5_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+0)+0:internal_degree*(width*(length-move-1-i0)+0)+internal_degree] = h01_for_lead_5.transpose().conj()[begin_index:end_index, begin_index:end_index]
h_lead6_to_center[begin_index:end_index, internal_degree*(width*(i0+move)+0)+0:internal_degree*(width*(i0+move)+0)+internal_degree] = h01_for_lead_6.transpose().conj()[begin_index:end_index, begin_index:end_index]
self_energy1, gamma1 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_1, h01_for_lead_1, h_lead1_to_center)
self_energy2, gamma2 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_2, h01_for_lead_1, h_lead2_to_center)
self_energy3, gamma3 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_3, h01_for_lead_1, h_lead3_to_center)
self_energy4, gamma4 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_4, h01_for_lead_1, h_lead4_to_center)
self_energy5, gamma5 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_5, h01_for_lead_1, h_lead5_to_center)
self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center)
gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6]
green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6)
return gamma_array, green
# 计算六端口的透射矩阵
@guan.function_decorator
def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
import numpy as np
import guan
gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width, length, internal_degree, moving_step_of_leads)
transmission_matrix = np.zeros((6, 6), dtype=complex)
channel_lead_4 = guan.calculate_conductance(fermi_energy, h00_for_lead_4, h01_for_lead_4, length=3)
channel_lead_2 = guan.calculate_conductance(fermi_energy, h00_for_lead_2, h01_for_lead_2, length=3)
for i0 in range(6):
for j0 in range(6):
if j0!=i0:
transmission_matrix[i0, j0] = np.trace(np.dot(np.dot(np.dot(gamma_array[i0], green), gamma_array[j0]), green.transpose().conj()))
for i0 in range(6):
if i0 == 0 or i0 == 3:
transmission_matrix[i0, i0] = channel_lead_4
else:
transmission_matrix[i0, i0] = channel_lead_2
for i0 in range(6):
for j0 in range(6):
if j0!=i0:
transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0]
transmission_matrix = np.real(transmission_matrix)
return transmission_matrix
# 计算从电极1出发的透射系数
@guan.function_decorator
def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
import numpy as np
import guan
gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width, length, internal_degree, moving_step_of_leads)
transmission_12 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[1]), green.transpose().conj())))
transmission_13 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[2]), green.transpose().conj())))
transmission_14 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[3]), green.transpose().conj())))
transmission_15 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[4]), green.transpose().conj())))
transmission_16 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[5]), green.transpose().conj())))
return transmission_12, transmission_13, transmission_14, transmission_15, transmission_16
# 通过动量k的虚部判断通道为传播通道还是衰减通道
@guan.function_decorator
def if_active_channel(k_of_channel):
import numpy as np
if np.abs(np.imag(k_of_channel))<1e-6:
if_active = 1
else:
if_active = 0
return if_active
# 获取通道的动量和速度,用于计算散射矩阵
@guan.function_decorator
def get_k_and_velocity_of_channel(fermi_energy, h00, h01):
import numpy as np
import math
import copy
import guan
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
eigenvalue, eigenvector = np.linalg.eig(transfer)
k_of_channel = np.log(eigenvalue)/1j
ind = np.argsort(np.real(k_of_channel))
k_of_channel = np.sort(k_of_channel)
temp = np.zeros((2*dim, 2*dim), dtype=complex)
temp2 = np.zeros((2*dim), dtype=complex)
i0 = 0
for ind0 in ind:
temp[:, i0] = eigenvector[:, ind0]
temp2[i0] = eigenvalue[ind0]
i0 += 1
eigenvalue = copy.deepcopy(temp2)
temp = temp[0:dim, :]
factor = np.zeros(2*dim)
for dim0 in range(dim):
factor = factor+np.square(np.abs(temp[dim0, :]))
for dim0 in range(2*dim):
temp[:, dim0] = temp[:, dim0]/math.sqrt(factor[dim0])
velocity_of_channel = np.zeros((2*dim), dtype=complex)
for dim0 in range(2*dim):
velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0]
velocity_of_channel = -2*np.imag(velocity_of_channel)
eigenvector = copy.deepcopy(temp)
return k_of_channel, velocity_of_channel, eigenvalue, eigenvector
# 获取分类后的动量和速度以及U和F用于计算散射矩阵
@guan.function_decorator
def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01):
import numpy as np
import guan
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
k_of_channel, velocity_of_channel, eigenvalue, eigenvector = guan.get_k_and_velocity_of_channel(fermi_energy, h00, h01)
ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0
k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex)
velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex)
lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex)
u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex)
for dim0 in range(2*dim):
if_active = guan.if_active_channel(k_of_channel[dim0])
if guan.if_active_channel(k_of_channel[dim0]) == 1:
direction = np.sign(velocity_of_channel[dim0])
else:
direction = np.sign(np.imag(k_of_channel[dim0]))
if direction == 1:
if if_active == 1: # right-moving active channel
k_right[ind_right_active] = k_of_channel[dim0]
velocity_right[ind_right_active] = velocity_of_channel[dim0]
lambda_right[ind_right_active] = eigenvalue[dim0]
u_right[:, ind_right_active] = eigenvector[:, dim0]
ind_right_active += 1
else: # right-moving evanescent channel
k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0]
velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0]
lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0]
u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0]
ind_right_evanescent += 1
else:
if if_active == 1: # left-moving active channel
k_left[ind_left_active] = k_of_channel[dim0]
velocity_left[ind_left_active] = velocity_of_channel[dim0]
lambda_left[ind_left_active] = eigenvalue[dim0]
u_left[:, ind_left_active] = eigenvector[:, dim0]
ind_left_active += 1
else: # left-moving evanescent channel
k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0]
velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0]
lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0]
u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0]
ind_left_evanescent += 1
lambda_matrix_right = np.diag(lambda_right)
lambda_matrix_left = np.diag(lambda_left)
f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right))
f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left))
return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active
# 计算散射矩阵
@guan.function_decorator
def calculate_scattering_matrix(fermi_energy, h00, h01, length=100):
import numpy as np
import math
import copy
import guan
h01 = np.array(h01)
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01)
right_self_energy = np.dot(h01, f_right)
left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left))
for i0 in range(length):
if i0 == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_00_n = copy.deepcopy(green_nn_n)
green_0n_n = copy.deepcopy(green_nn_n)
green_n0_n = copy.deepcopy(green_nn_n)
elif i0 != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n)
temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left))
transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)
reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right)
for dim0 in range(dim):
for dim1 in range(dim):
if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1])
if if_active == 1:
transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1]
reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1]
else:
transmission_matrix[dim0, dim1] = 0
reflection_matrix[dim0, dim1] = 0
sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
for sum_of_tran_refl in sum_of_tran_refl_array:
if sum_of_tran_refl > 1.001:
print('Error Alert: scattering matrix is not normalized!')
return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
# 从散射矩阵中,获取散射矩阵的信息
@guan.function_decorator
def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active):
import numpy as np
if np.array(transmission_matrix).shape==():
dim = 1
else:
dim = np.array(transmission_matrix).shape[0]
number_of_active_channels = ind_right_active
number_of_evanescent_channels = dim-ind_right_active
k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active])
k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active])
velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active])
velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active])
transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))
reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active]))
total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])))
total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
# 已知h00和h01计算散射矩阵并获得散射矩阵的信息
@guan.function_decorator
def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100):
import guan
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
# 从散射矩阵中打印出散射矩阵的信息
@guan.function_decorator
def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'):
if print_show == 1:
print('\nActive channel (left or right) = ', number_of_active_channels)
print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n')
print('K of right-moving active channels:\n', k_of_right_moving_active_channels)
print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n')
print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels)
print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n')
print('Transmission matrix:\n', transmission_matrix_for_active_channels)
print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n')
print('Total transmission of channels:\n', total_transmission_of_channels)
print('Total conductance = ', total_conductance, '\n')
print('Total reflection of channels:\n', total_reflection_of_channels)
print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n')
if write_file == 1:
with open(filename+file_format, 'w') as f:
f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n')
f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n')
f.write('Channel K Velocity\n')
for ind0 in range(number_of_active_channels):
f.write(' '+str(ind0 + 1) + ' | '+str(k_of_right_moving_active_channels[ind0])+' ' + str(velocity_of_right_moving_active_channels[ind0])+'\n')
f.write('\n')
for ind0 in range(number_of_active_channels):
f.write(' -' + str(ind0 + 1) + ' | ' + str(k_of_left_moving_active_channels[ind0]) + ' ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n')
f.write('\nScattering matrix:\n ')
for ind0 in range(number_of_active_channels):
f.write(str(ind0+1)+' ')
f.write('\n')
for ind1 in range(number_of_active_channels):
f.write(' '+str(ind1+1)+' ')
for ind2 in range(number_of_active_channels):
f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+' ')
f.write('\n')
f.write('\n')
for ind1 in range(number_of_active_channels):
f.write(' -'+str(ind1+1)+' ')
for ind2 in range(number_of_active_channels):
f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+' ')
f.write('\n')
f.write('\n')
f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n')
f.write('Total conductance = '+str(total_conductance)+'\n')
# 已知h00和h01计算散射矩阵并打印出散射矩阵的信息
@guan.function_decorator
def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'):
import guan
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format)
# 在无序下,计算散射矩阵
@guan.function_decorator
def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0):
import numpy as np
import math
import copy
import guan
h01 = np.array(h01)
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01)
right_self_energy = np.dot(h01, f_right)
left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left))
for i0 in range(length):
disorder = np.zeros((dim, dim))
for dim0 in range(dim):
if np.random.uniform(0, 1)<=disorder_concentration:
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
if i0 == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_00_n = copy.deepcopy(green_nn_n)
green_0n_n = copy.deepcopy(green_nn_n)
green_n0_n = copy.deepcopy(green_nn_n)
elif i0 != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n)
temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left))
transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)
reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right)
for dim0 in range(dim):
for dim1 in range(dim):
if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1])
if if_active == 1:
transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1]
reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1]
else:
transmission_matrix[dim0, dim1] = 0
reflection_matrix[dim0, dim1] = 0
sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
for sum_of_tran_refl in sum_of_tran_refl_array:
if sum_of_tran_refl > 1.001:
print('Error Alert: scattering matrix is not normalized!')
return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
# 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息
@guan.function_decorator
def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1):
import guan
transmission_matrix_for_active_channels_averaged = 0
reflection_matrix_for_active_channels_averaged = 0
for i0 in range(calculation_times):
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length, disorder_intensity, disorder_concentration)
number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
transmission_matrix_for_active_channels_averaged += transmission_matrix_for_active_channels
reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels
transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times
reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times
return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged