py.guanjihuan.com/PyPI/src/guan/data_processing.py
2023-12-01 22:22:23 +08:00

823 lines
33 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Module: data_processing (including figure-plotting and file-reading/writing)
import guan
# 导入plt, fig, ax
@guan.function_decorator
def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20):
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left)
ax.grid()
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels()
[label.set_fontname('Times New Roman') for label in labels]
return plt, fig, ax
# 基于plt, fig, ax画图
@guan.function_decorator
def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):
if color==None:
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
else:
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize, color=color)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y_min=min(y_array)
if y_max==None:
y_max=max(y_array)
ax.set_ylim(y_min, y_max)
# 画图
@guan.function_decorator
def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):
import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y_min=min(y_array)
if y_max==None:
y_max=max(y_array)
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 一组横坐标数据,两组纵坐标数据画图
@guan.function_decorator
def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y_min=min([y1_min, y2_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y_max=max([y1_max, y2_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 两组横坐标数据,两组纵坐标数据画图
@guan.function_decorator
def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y_min=min([y1_min, y2_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y_max=max([y1_max, y2_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 一组横坐标数据,三组纵坐标数据画图
@guan.function_decorator
def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y3_min=min(y3_array)
y_min=min([y1_min, y2_min, y3_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y3_max=max(y3_array)
y_max=max([y1_max, y2_max, y3_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 三组横坐标数据,三组纵坐标数据画图
@guan.function_decorator
def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y3_min=min(y3_array)
y_min=min([y1_min, y2_min, y3_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y3_max=max(y3_array)
y_max=max([y1_max, y2_max, y3_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 画三维图
@guan.function_decorator
def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator
matrix = np.array(matrix)
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
plt.subplots_adjust(bottom=0.1, right=0.65)
x_array, y_array = np.meshgrid(x_array, y_array)
if len(matrix.shape) == 2:
surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
elif len(matrix.shape) == 3:
for i0 in range(matrix.shape[2]):
surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.zaxis.set_major_locator(LinearLocator(5))
ax.zaxis.set_major_formatter('{x:.2f}')
if z_min!=None or z_max!=None:
if z_min==None:
z_min=matrix.min()
if z_max==None:
z_max=matrix.max()
ax.set_zlim(z_min, z_max)
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()
[label.set_fontname('Times New Roman') for label in labels]
cax = plt.axes([0.8, 0.1, 0.05, 0.8])
cbar = fig.colorbar(surf, cax=cax)
cbar.ax.tick_params(labelsize=labelsize)
for l in cbar.ax.yaxis.get_ticklabels():
l.set_family('Times New Roman')
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 画Contour图
@guan.function_decorator
def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)
x_array, y_array = np.meshgrid(x_array, y_array)
contour = ax.contourf(x_array,y_array,matrix,cmap=cmap, levels=levels)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels()
[label.set_fontname('Times New Roman') for label in labels]
cax = plt.axes([0.8, 0.2, 0.05, 0.68])
cbar = fig.colorbar(contour, cax=cax)
cbar.ax.tick_params(labelsize=labelsize)
for l in cbar.ax.yaxis.get_ticklabels():
l.set_family('Times New Roman')
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 画棋盘图/伪彩色图
@guan.function_decorator
def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)
x_array, y_array = np.meshgrid(x_array, y_array)
contour = ax.pcolor(x_array,y_array,matrix, cmap=cmap)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels()
[label.set_fontname('Times New Roman') for label in labels]
cax = plt.axes([0.8, 0.2, 0.05, 0.68])
cbar = fig.colorbar(contour, cax=cax)
cbar.ax.tick_params(labelsize=labelsize)
for l in cbar.ax.yaxis.get_ticklabels():
l.set_family('Times New Roman')
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
# 通过坐标画点和线
@guan.function_decorator
def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300):
import numpy as np
import matplotlib.pyplot as plt
coordinate_array = np.array(coordinate_array)
print(coordinate_array.shape)
x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0])
y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1])
fig, ax = plt.subplots(figsize=(6*x_range/y_range,6))
plt.subplots_adjust(left=0, bottom=0, right=1, top=1)
plt.axis('off')
if draw_lines==1:
for i1 in range(coordinate_array.shape[0]):
for i2 in range(coordinate_array.shape[0]):
if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance:
ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth)
if draw_dots==1:
for i in range(coordinate_array.shape[0]):
ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize)
if show==1:
plt.show()
if save==1:
if file_format=='.eps':
plt.savefig(filename+file_format)
else:
plt.savefig(filename+file_format, dpi=dpi)
# 合并两个图片
@guan.function_decorator
def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
import numpy as np
num = np.array(image_path_array).shape[0]
if num != 2:
print('Error: The number of images should be two!')
else:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig = plt.figure(figsize=figsize)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
image_1 = mpimg.imread(image_path_array[0])
image_2 = mpimg.imread(image_path_array[1])
ax1.imshow(image_1)
ax2.imshow(image_2)
ax1.axis('off')
ax2.axis('off')
if show == 1:
plt.show()
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
plt.close('all')
# 合并三个图片
@guan.function_decorator
def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
import numpy as np
num = np.array(image_path_array).shape[0]
if num != 3:
print('Error: The number of images should be three!')
else:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig = plt.figure(figsize=figsize)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
ax1 = fig.add_subplot(131)
ax2 = fig.add_subplot(132)
ax3 = fig.add_subplot(133)
image_1 = mpimg.imread(image_path_array[0])
image_2 = mpimg.imread(image_path_array[1])
image_3 = mpimg.imread(image_path_array[2])
ax1.imshow(image_1)
ax2.imshow(image_2)
ax3.imshow(image_3)
ax1.axis('off')
ax2.axis('off')
ax3.axis('off')
if show == 1:
plt.show()
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
plt.close('all')
# 合并四个图片
@guan.function_decorator
def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
import numpy as np
num = np.array(image_path_array).shape[0]
if num != 4:
print('Error: The number of images should be four!')
else:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig = plt.figure(figsize=figsize)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
image_1 = mpimg.imread(image_path_array[0])
image_2 = mpimg.imread(image_path_array[1])
image_3 = mpimg.imread(image_path_array[2])
image_4 = mpimg.imread(image_path_array[3])
ax1.imshow(image_1)
ax2.imshow(image_2)
ax3.imshow(image_3)
ax4.imshow(image_4)
ax1.axis('off')
ax2.axis('off')
ax3.axis('off')
ax4.axis('off')
if show == 1:
plt.show()
if save == 1:
plt.savefig(filename+file_format, dpi=dpi)
plt.close('all')
# 对某个目录中的txt文件批量读取和画图
@guan.function_decorator
def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'):
import re
import os
import guan
for root, dirs, files in os.walk(directory):
for file in files:
if re.search('^txt.', file[::-1]):
filename = file[:-4]
x_array, y_array = guan.read_one_dimensional_data(filename=filename)
guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename)
# 将图片制作GIF动画
@guan.function_decorator
def make_gif(image_path_array, filename='a', duration=0.1):
import imageio
images = []
for image_path in image_path_array:
im = imageio.imread(image_path)
images.append(im)
imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration)
# 选取Matplotlib颜色
@guan.function_decorator
def color_matplotlib():
color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan']
return color_array
# 将变量存到文件
@guan.function_decorator
def dump_data(data, filename, file_format='.txt'):
import pickle
with open(filename+file_format, 'wb') as f:
pickle.dump(data, f)
# 从文件中恢复数据到变量
@guan.function_decorator
def load_data(filename, file_format='.txt'):
import pickle
with open(filename+file_format, 'rb') as f:
data = pickle.load(f)
return data
# 读取文件中的一维数据一行一组x和y
@guan.function_decorator
def read_one_dimensional_data(filename='a', file_format='.txt'):
import numpy as np
f = open(filename+file_format, 'r')
text = f.read()
f.close()
row_list = np.array(text.split('\n'))
dim_column = np.array(row_list[0].split()).shape[0]
x_array = np.array([])
y_array = np.array([])
for row in row_list:
column = np.array(row.split())
if column.shape[0] != 0:
x_array = np.append(x_array, [float(column[0])], axis=0)
y_row = np.zeros(dim_column-1)
for dim0 in range(dim_column-1):
y_row[dim0] = float(column[dim0+1])
if np.array(y_array).shape[0] == 0:
y_array = [y_row]
else:
y_array = np.append(y_array, [y_row], axis=0)
return x_array, y_array
# 读取文件中的一维数据一行一组x和y支持复数形式
@guan.function_decorator
def read_one_dimensional_complex_data(filename='a', file_format='.txt'):
import numpy as np
f = open(filename+file_format, 'r')
text = f.read()
f.close()
row_list = np.array(text.split('\n'))
dim_column = np.array(row_list[0].split()).shape[0]
x_array = np.array([])
y_array = np.array([])
for row in row_list:
column = np.array(row.split())
if column.shape[0] != 0:
x_array = np.append(x_array, [complex(column[0])], axis=0)
y_row = np.zeros(dim_column-1, dtype=complex)
for dim0 in range(dim_column-1):
y_row[dim0] = complex(column[dim0+1])
if np.array(y_array).shape[0] == 0:
y_array = [y_row]
else:
y_array = np.append(y_array, [y_row], axis=0)
return x_array, y_array
# 读取文件中的二维数据(第一行和第一列分别为横纵坐标)
@guan.function_decorator
def read_two_dimensional_data(filename='a', file_format='.txt'):
import numpy as np
f = open(filename+file_format, 'r')
text = f.read()
f.close()
row_list = np.array(text.split('\n'))
dim_column = np.array(row_list[0].split()).shape[0]
x_array = np.array([])
y_array = np.array([])
matrix = np.array([])
for i0 in range(row_list.shape[0]):
column = np.array(row_list[i0].split())
if i0 == 0:
x_str = column[1::]
x_array = np.zeros(x_str.shape[0])
for i00 in range(x_str.shape[0]):
x_array[i00] = float(x_str[i00])
elif column.shape[0] != 0:
y_array = np.append(y_array, [float(column[0])], axis=0)
matrix_row = np.zeros(dim_column-1)
for dim0 in range(dim_column-1):
matrix_row[dim0] = float(column[dim0+1])
if np.array(matrix).shape[0] == 0:
matrix = [matrix_row]
else:
matrix = np.append(matrix, [matrix_row], axis=0)
return x_array, y_array, matrix
# 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式)
@guan.function_decorator
def read_two_dimensional_complex_data(filename='a', file_format='.txt'):
import numpy as np
f = open(filename+file_format, 'r')
text = f.read()
f.close()
row_list = np.array(text.split('\n'))
dim_column = np.array(row_list[0].split()).shape[0]
x_array = np.array([])
y_array = np.array([])
matrix = np.array([])
for i0 in range(row_list.shape[0]):
column = np.array(row_list[i0].split())
if i0 == 0:
x_str = column[1::]
x_array = np.zeros(x_str.shape[0], dtype=complex)
for i00 in range(x_str.shape[0]):
x_array[i00] = complex(x_str[i00])
elif column.shape[0] != 0:
y_array = np.append(y_array, [complex(column[0])], axis=0)
matrix_row = np.zeros(dim_column-1, dtype=complex)
for dim0 in range(dim_column-1):
matrix_row[dim0] = complex(column[dim0+1])
if np.array(matrix).shape[0] == 0:
matrix = [matrix_row]
else:
matrix = np.append(matrix, [matrix_row], axis=0)
return x_array, y_array, matrix
# 读取文件中的二维数据不包括x和y
@guan.function_decorator
def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'):
import numpy as np
matrix = np.loadtxt(filename+file_format)
return matrix
# 打开文件用于新增内容
@guan.function_decorator
def open_file(filename='a', file_format='.txt'):
f = open(filename+file_format, 'a', encoding='UTF-8')
return f
# 在文件中写入一维数据一行一组x和y
@guan.function_decorator
def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'):
import guan
with open(filename+file_format, 'w', encoding='UTF-8') as f:
guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f)
# 在文件中写入一维数据一行一组x和y需要输入已打开的文件
@guan.function_decorator
def write_one_dimensional_data_without_opening_file(x_array, y_array, f):
import numpy as np
x_array = np.array(x_array)
y_array = np.array(y_array)
i0 = 0
for x0 in x_array:
f.write(str(x0)+' ')
if len(y_array.shape) == 1:
f.write(str(y_array[i0])+'\n')
elif len(y_array.shape) == 2:
for j0 in range(y_array.shape[1]):
f.write(str(y_array[i0, j0])+' ')
f.write('\n')
i0 += 1
# 在文件中写入二维数据(第一行和第一列分别为横纵坐标)
@guan.function_decorator
def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'):
import guan
with open(filename+file_format, 'w', encoding='UTF-8') as f:
guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f)
# 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件)
@guan.function_decorator
def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f):
import numpy as np
x_array = np.array(x_array)
y_array = np.array(y_array)
matrix = np.array(matrix)
f.write('0 ')
for x0 in x_array:
f.write(str(x0)+' ')
f.write('\n')
i0 = 0
for y0 in y_array:
f.write(str(y0))
j0 = 0
for x0 in x_array:
f.write(' '+str(matrix[i0, j0])+' ')
j0 += 1
f.write('\n')
i0 += 1
# 在文件中写入二维数据不包括x和y
@guan.function_decorator
def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'):
import guan
with open(filename+file_format, 'w', encoding='UTF-8') as f:
guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f)
# 在文件中写入二维数据不包括x和y需要输入已打开的文件
@guan.function_decorator
def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f):
for row in matrix:
for element in row:
f.write(str(element)+' ')
f.write('\n')
import guan
# 以显示编号的样式,打印数组
@guan.function_decorator
def print_array_with_index(array, show_index=1, index_type=0):
if show_index==0:
for i0 in array:
print(i0)
else:
if index_type==0:
index = 0
for i0 in array:
print(index, i0)
index += 1
else:
index = 0
for i0 in array:
index += 1
print(index, i0)
# 获取目录中的所有文件名
@guan.function_decorator
def get_all_filenames_in_directory(directory='./', file_format=None):
import os
file_list = []
for root, dirs, files in os.walk(directory):
for i0 in range(len(files)):
if file_format == None:
file_list.append(files[i0])
else:
if file_format in files[i0]:
file_list.append(files[i0])
return file_list
# 读取文件夹中某种文本类型的文件路径和内容
@guan.function_decorator
def read_text_files_in_directory(directory='./', file_format='.md'):
import os
file_list = []
for root, dirs, files in os.walk(directory):
for i0 in range(len(files)):
if file_format in files[i0]:
file_list.append(root+'/'+files[i0])
content_array = []
for file in file_list:
with open(file, 'r') as f:
content_array.append(f.read())
return file_list, content_array
# 在多个文本文件中查找关键词
@guan.function_decorator
def find_words_in_multiple_files(words, directory='./', file_format='.md'):
import guan
file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format)
num_files = len(file_list)
file_list_with_words = []
for i0 in range(num_files):
if words in content_array[i0]:
file_list_with_words.append(file_list[i0])
return file_list_with_words
# 并行计算前的预处理,把参数分成多份
@guan.function_decorator
def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0):
import numpy as np
num_all = np.array(parameter_array_all).shape[0]
if num_all%cpus == 0:
num_parameter = int(num_all/cpus)
parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter]
else:
num_parameter = int(num_all/(cpus-1))
if task_index != cpus-1:
parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter]
else:
parameter_array = parameter_array_all[task_index*num_parameter:num_all]
return parameter_array
# 随机获得一个整数,左闭右闭
@guan.function_decorator
def get_random_number(start=0, end=1):
import random
rand_number = random.randint(start, end) # 左闭右闭 [start, end]
return rand_number
# 选取一个种子生成固定的随机整数
@guan.function_decorator
def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10):
import numpy as np
np.random.seed(seed)
rand_num = np.random.randint(x_min, x_max) # 左闭右开[x_min, x_max)
return rand_num
# 使用jieba软件包进行分词
@guan.function_decorator
def divide_text_into_words(text):
import jieba
words = jieba.lcut(text)
return words
# 判断某个字符是中文还是英文或其他
@guan.function_decorator
def check_Chinese_or_English(a):
if '\u4e00' <= a <= '\u9fff' :
word_type = 'Chinese'
elif '\x00' <= a <= '\xff':
word_type = 'English'
else:
word_type = 'Others'
return word_type
# 统计中英文文本的字数,默认不包括空格
@guan.function_decorator
def count_words(text, include_space=0, show_words=0):
import jieba
import guan
words = jieba.lcut(text)
new_words = []
if include_space == 0:
for word in words:
if word != ' ':
new_words.append(word)
else:
new_words = words
num_words = 0
new_words_2 = []
for word in new_words:
word_type = guan.check_Chinese_or_English(word[0])
if word_type == 'Chinese':
num_words += len(word)
for one_word in word:
new_words_2.append(one_word)
elif word_type == 'English' or 'Others':
num_words += 1
new_words_2.append(word)
if show_words == 1:
print(new_words_2)
return num_words
# 将RGB转成HEX
@guan.function_decorator
def rgb_to_hex(rgb, pound=1):
if pound==0:
return '%02x%02x%02x' % rgb
else:
return '#%02x%02x%02x' % rgb
# 将HEX转成RGB
@guan.function_decorator
def hex_to_rgb(hex):
hex = hex.lstrip('#')
length = len(hex)
return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3))
# 使用MD5进行散列加密
@guan.function_decorator
def encryption_MD5(password, salt=''):
import hashlib
password = salt+password
hashed_password = hashlib.md5(password.encode()).hexdigest()
return hashed_password
# 使用SHA-256进行散列加密
@guan.function_decorator
def encryption_SHA_256(password, salt=''):
import hashlib
password = salt+password
hashed_password = hashlib.sha256(password.encode()).hexdigest()
return hashed_password
# 自动先后运行程序
@guan.function_decorator
def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0):
import os
import time
if show_time == 1:
start = time.time()
i0 = 0
for program_file in program_files:
i0 += 1
if show_time == 1:
start_0 = time.time()
os.system(execute+program_file)
if show_time == 1:
end_0 = time.time()
print('Running time of program_'+str(i0)+' = '+str((end_0-start_0)/60)+' min')
if show_time == 1:
end = time.time()
print('Total running time = '+str((end-start)/60)+' min')
# 如果不存在文件夹,则新建文件夹
@guan.function_decorator
def make_directory(directory='./test'):
import os
if not os.path.exists(directory):
os.makedirs(directory)
# 复制一份文件
@guan.function_decorator
def copy_file(file1='./a.txt', file2='./b.txt'):
import shutil
shutil.copy(file1, file2)
# 拼接两个PDF文件
@guan.function_decorator
def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'):
import PyPDF2
output_pdf = PyPDF2.PdfWriter()
with open(input_file_1, 'rb') as file1:
pdf1 = PyPDF2.PdfReader(file1)
for page in range(len(pdf1.pages)):
output_pdf.add_page(pdf1.pages[page])
with open(input_file_2, 'rb') as file2:
pdf2 = PyPDF2.PdfReader(file2)
for page in range(len(pdf2.pages)):
output_pdf.add_page(pdf2.pages[page])
with open(output_file, 'wb') as combined_file:
output_pdf.write(combined_file)