192 lines
9.9 KiB
Python
192 lines
9.9 KiB
Python
# Module: density_of_states
|
||
|
||
# 计算体系的总态密度
|
||
def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01):
|
||
import numpy as np
|
||
import math
|
||
import guan
|
||
green = guan.green_function(fermi_energy, hamiltonian, broadening)
|
||
total_dos = -np.trace(np.imag(green))/math.pi
|
||
return total_dos
|
||
|
||
# 对于不同费米能,计算体系的总态密度
|
||
def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0):
|
||
import numpy as np
|
||
import guan
|
||
dim = np.array(fermi_energy_array).shape[0]
|
||
total_dos_array = np.zeros(dim)
|
||
i0 = 0
|
||
for fermi_energy in fermi_energy_array:
|
||
if print_show == 1:
|
||
print(fermi_energy)
|
||
total_dos_array[i0] = guan.total_density_of_states(fermi_energy, hamiltonian, broadening)
|
||
i0 += 1
|
||
return total_dos_array
|
||
|
||
# 计算方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*internal_degree)
|
||
def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01):
|
||
import numpy as np
|
||
import math
|
||
import guan
|
||
green = guan.green_function(fermi_energy, hamiltonian, broadening)
|
||
local_dos = np.zeros((N2, N1))
|
||
for i1 in range(N1):
|
||
for i2 in range(N2):
|
||
for i in range(internal_degree):
|
||
local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/math.pi
|
||
return local_dos
|
||
|
||
# 计算立方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*N3*internal_degree)
|
||
def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01):
|
||
import numpy as np
|
||
import math
|
||
import guan
|
||
green = guan.green_function(fermi_energy, hamiltonian, broadening)
|
||
local_dos = np.zeros((N3, N2, N1))
|
||
for i1 in range(N1):
|
||
for i2 in range(N2):
|
||
for i3 in range(N3):
|
||
for i in range(internal_degree):
|
||
local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/math.pi
|
||
return local_dos
|
||
|
||
# 使用Dyson方程,计算方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree)
|
||
def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01):
|
||
import numpy as np
|
||
import math
|
||
import guan
|
||
local_dos = np.zeros((N2, N1))
|
||
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
|
||
for i1 in range(N1):
|
||
green_nn_n_minus = green_11_1
|
||
green_in_n_minus = green_11_1
|
||
green_ni_n_minus = green_11_1
|
||
green_ii_n_minus = green_11_1
|
||
for _ in range(i1):
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
||
green_nn_n_minus = green_nn_n
|
||
if i1!=0:
|
||
green_in_n_minus = green_nn_n
|
||
green_ni_n_minus = green_nn_n
|
||
green_ii_n_minus = green_nn_n
|
||
for _ in range(N1-1-i1):
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
||
green_nn_n_minus = green_nn_n
|
||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
||
green_ii_n_minus = green_ii_n
|
||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
||
green_in_n_minus = green_in_n
|
||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
||
green_ni_n_minus = green_ni_n
|
||
for i2 in range(N2):
|
||
for i in range(internal_degree):
|
||
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
|
||
return local_dos
|
||
|
||
# 使用Dyson方程,计算方格子的局域态密度,方法二(其中,h00的维度为:dim_h00 = N2*internal_degree)
|
||
def local_density_of_states_for_square_lattice_using_dyson_equation_with_second_method(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01):
|
||
import numpy as np
|
||
import math
|
||
import guan
|
||
h01 = np.array(h01)
|
||
if np.array(h00).shape==():
|
||
dim = 1
|
||
else:
|
||
dim = np.array(h00).shape[0]
|
||
local_dos = np.zeros((N2, N1))
|
||
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
|
||
for i1 in range(N1):
|
||
green_nn_n_right_minus = green_11_1
|
||
green_nn_n_left_minus = green_11_1
|
||
if i1!=0:
|
||
for _ in range(i1-1):
|
||
green_nn_n_right = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_right_minus, broadening)
|
||
green_nn_n_right_minus = green_nn_n_right
|
||
if i1!=N1-1:
|
||
for _ in range(N1-i1-2):
|
||
G_nn_n_left = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_left_minus, broadening)
|
||
green_nn_n_left_minus = G_nn_n_left
|
||
if i1==0:
|
||
green_ii_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01, green_nn_n_left_minus), h01.transpose().conj()))
|
||
elif i1!=0 and i1!=N1-1:
|
||
green_ii_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_right_minus), h01)-np.dot(np.dot(h01, green_nn_n_left_minus), h01.transpose().conj()))
|
||
elif i1==N1-1:
|
||
green_ii_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_right_minus), h01))
|
||
for i2 in range(N2):
|
||
for i in range(internal_degree):
|
||
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n[i2*internal_degree+i, i2*internal_degree+i])/math.pi
|
||
return local_dos
|
||
|
||
# 使用Dyson方程,计算立方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*N3*internal_degree)
|
||
def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01):
|
||
import numpy as np
|
||
import math
|
||
import guan
|
||
local_dos = np.zeros((N3, N2, N1))
|
||
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
|
||
for i1 in range(N1):
|
||
green_nn_n_minus = green_11_1
|
||
green_in_n_minus = green_11_1
|
||
green_ni_n_minus = green_11_1
|
||
green_ii_n_minus = green_11_1
|
||
for _ in range(i1):
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
||
green_nn_n_minus = green_nn_n
|
||
if i1!=0:
|
||
green_in_n_minus = green_nn_n
|
||
green_ni_n_minus = green_nn_n
|
||
green_ii_n_minus = green_nn_n
|
||
for _ in range(N1-1-i1):
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
||
green_nn_n_minus = green_nn_n
|
||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
||
green_ii_n_minus = green_ii_n
|
||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
||
green_in_n_minus = green_in_n
|
||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
||
green_ni_n_minus = green_ni_n
|
||
for i2 in range(N2):
|
||
for i3 in range(N3):
|
||
for i in range(internal_degree):
|
||
local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi
|
||
return local_dos
|
||
|
||
# 使用Dyson方程,计算方格子条带(考虑了电极自能)的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree)
|
||
def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01):
|
||
import numpy as np
|
||
import math
|
||
import guan
|
||
local_dos = np.zeros((N2, N1))
|
||
green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening)
|
||
for i1 in range(N1):
|
||
green_nn_n_minus = green_11_1
|
||
green_in_n_minus = green_11_1
|
||
green_ni_n_minus = green_11_1
|
||
green_ii_n_minus = green_11_1
|
||
for i2_0 in range(i1):
|
||
if i2_0 == N1-1-1:
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
|
||
else:
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
||
green_nn_n_minus = green_nn_n
|
||
if i1!=0:
|
||
green_in_n_minus = green_nn_n
|
||
green_ni_n_minus = green_nn_n
|
||
green_ii_n_minus = green_nn_n
|
||
for size_0 in range(N1-1-i1):
|
||
if size_0 == N1-1-i1-1:
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
|
||
else:
|
||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
||
green_nn_n_minus = green_nn_n
|
||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
||
green_ii_n_minus = green_ii_n
|
||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
||
green_in_n_minus = green_in_n
|
||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
||
green_ni_n_minus = green_ni_n
|
||
for i2 in range(N2):
|
||
for i in range(internal_degree):
|
||
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
|
||
return local_dos
|