112 lines
4.3 KiB
Python
112 lines
4.3 KiB
Python
"""
|
||
This code is supported by the website: https://www.guanjihuan.com
|
||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
|
||
"""
|
||
|
||
import streamlit as st
|
||
st.set_page_config(
|
||
page_title="Chat",
|
||
layout='wide'
|
||
)
|
||
|
||
@st.cache_resource
|
||
def load_model_internlm_7B():
|
||
# internlm(需要 7G 显存)
|
||
import torch
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||
nf4_config = BitsAndBytesConfig(
|
||
load_in_4bit=True,
|
||
bnb_4bit_quant_type="nf4",
|
||
)
|
||
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, quantization_config=nf4_config)
|
||
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
||
model = model.eval()
|
||
return model, tokenizer
|
||
model_internlm_7B, tokenizer_internlm_7B = load_model_internlm_7B()
|
||
|
||
with st.sidebar:
|
||
with st.expander('参数', expanded=True):
|
||
max_length = 409600
|
||
top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
|
||
temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session')
|
||
def reset_parameter():
|
||
st.session_state['top_p_session'] = 0.8
|
||
st.session_state['temperature_session'] = 0.8
|
||
reset_parameter_button = st.button('重置', on_click=reset_parameter)
|
||
|
||
prompt = st.chat_input("在这里输入您的命令")
|
||
|
||
from tools.transformers.interface import GenerationConfig, generate_interactive
|
||
|
||
def prepare_generation_config():
|
||
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
|
||
return generation_config
|
||
|
||
def combine_history(prompt, messages):
|
||
total_prompt = ""
|
||
for message in messages:
|
||
cur_content = message["content"]
|
||
if message["role"] == "user":
|
||
cur_prompt = user_prompt.replace("{user}", cur_content)
|
||
elif message["role"] == "robot":
|
||
cur_prompt = robot_prompt.replace("{robot}", cur_content)
|
||
else:
|
||
raise RuntimeError
|
||
total_prompt += cur_prompt
|
||
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt)
|
||
return total_prompt
|
||
|
||
user_prompt = "<|User|>:{user}<eoh>\n"
|
||
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
|
||
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:"
|
||
generation_config = prepare_generation_config()
|
||
|
||
if "messages_internlm_7B" not in st.session_state:
|
||
st.session_state.messages_internlm_7B = []
|
||
|
||
from dataclasses import asdict
|
||
|
||
def chat_response_internlm_7B(prompt):
|
||
real_prompt = combine_history(prompt, messages = st.session_state.messages_internlm_7B)
|
||
st.session_state.messages_internlm_7B.append({"role": "user", "content": prompt, "avatar": 'user'})
|
||
for cur_response in generate_interactive(
|
||
model=model_internlm_7B,
|
||
tokenizer=tokenizer_internlm_7B,
|
||
prompt=real_prompt,
|
||
additional_eos_token_id=103028,
|
||
**asdict(generation_config),
|
||
):
|
||
message_placeholder_internlm_7B.markdown(cur_response + "▌")
|
||
if stop_button:
|
||
break
|
||
message_placeholder_internlm_7B.markdown(cur_response)
|
||
st.session_state.messages_internlm_7B.append({"role": "robot", "content": cur_response, "avatar": "assistant"})
|
||
st.session_state.ai_response.append({"role": "robot", "content": cur_response, "avatar": "assistant"})
|
||
return cur_response
|
||
|
||
|
||
def clear_all():
|
||
st.session_state.messages_internlm_7B = []
|
||
st.session_state.ai_response = []
|
||
|
||
if 'messages_internlm_7B' not in st.session_state:
|
||
st.session_state.messages_internlm_7B = []
|
||
if 'ai_response' not in st.session_state:
|
||
st.session_state.ai_response = []
|
||
|
||
for ai_response in st.session_state.ai_response:
|
||
with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
|
||
st.markdown(ai_response["content"])
|
||
|
||
prompt_placeholder = st.chat_message("user", avatar='user')
|
||
with st.chat_message("robot", avatar="assistant"):
|
||
message_placeholder_internlm_7B = st.empty()
|
||
|
||
if prompt:
|
||
prompt_placeholder.markdown(prompt)
|
||
st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
|
||
stop = st.empty()
|
||
stop_button = stop.button('停止', key='break_response')
|
||
chat_response_internlm_7B(prompt)
|
||
stop.empty()
|
||
button_clear = st.button("清空", on_click=clear_all, key='clear') |