Create Berry_curvature_distribution_with_the_efficient_method_for_degenerate_case_(function_form).py
This commit is contained in:
		| @@ -0,0 +1,183 @@ | |||||||
|  | """ | ||||||
|  | This code is supported by the website: https://www.guanjihuan.com | ||||||
|  | The newest version of this code is on the web page: https://www.guanjihuan.com/archives/24059 | ||||||
|  | """ | ||||||
|  |  | ||||||
|  | import numpy as np | ||||||
|  | from math import *   | ||||||
|  | import cmath | ||||||
|  | import math | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def hamiltonian(k1, k2, t1=2.82, a=1/sqrt(3)):  # 石墨烯哈密顿量(a为原子间距,不赋值的话默认为1/sqrt(3)) | ||||||
|  |     h = np.zeros((2, 2))*(1+0j) | ||||||
|  |     h[0, 0] = 0.28/2 | ||||||
|  |     h[1, 1] = -0.28/2 | ||||||
|  |     h[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a)) | ||||||
|  |     h[0, 1] = h[1, 0].conj() | ||||||
|  |     return h | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(): | ||||||
|  |     k_array, berry_curvature_array = calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0], k_min=-2*math.pi, k_max=2*math.pi, precision=500) | ||||||
|  |     dim = berry_curvature_array.shape | ||||||
|  |     plot_3d_surface(k_array, k_array, np.real(berry_curvature_array), title='Valence Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature') | ||||||
|  |     plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :]), title='Valence Band  ky=0', xlabel='kx', ylabel='Berry curvature')  # ky=0 | ||||||
|  |  | ||||||
|  |     k_array, berry_curvature_array = calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0, 1], k_min=-2*math.pi, k_max=2*math.pi, precision=500) | ||||||
|  |     dim = berry_curvature_array.shape | ||||||
|  |     plot_3d_surface(k_array, k_array, np.real(berry_curvature_array), title='All Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature') | ||||||
|  |     plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :]), title='All Band  ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0 | ||||||
|  |  | ||||||
|  |  | ||||||
|  |     # import guan | ||||||
|  |     # k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0], k_min=-2*math.pi, k_max=2*math.pi, precision=500) | ||||||
|  |     # dim = berry_curvature_array.shape | ||||||
|  |     # guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array), title='Valence Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature') | ||||||
|  |     # guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :]), title='Valence Band  ky=0', xlabel='kx', ylabel='Berry curvature')  # ky=0 | ||||||
|  |  | ||||||
|  |     # k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function=hamiltonian, index_of_bands=[0, 1], k_min=-2*math.pi, k_max=2*math.pi, precision=500) | ||||||
|  |     # dim = berry_curvature_array.shape | ||||||
|  |     # guan.plot_3d_surface(k_array, k_array, np.real(berry_curvature_array), title='All Band', xlabel='kx', ylabel='ky', zlabel='Berry curvature') | ||||||
|  |     # guan.plot(k_array, np.real(berry_curvature_array[int(dim[0]/2), :]), title='All Band  ky=0', xlabel='kx', ylabel='Berry curvature') # ky=0 | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min=-math.pi, k_max=math.pi, precision=100, print_show=0): | ||||||
|  |     delta = (k_max-k_min)/precision | ||||||
|  |     k_array = np.arange(k_min, k_max, delta) | ||||||
|  |     berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex) | ||||||
|  |     i00 = 0 | ||||||
|  |     for kx in np.arange(k_min, k_max, delta): | ||||||
|  |         if print_show == 1: | ||||||
|  |             print(kx) | ||||||
|  |         j00 = 0 | ||||||
|  |         for ky in np.arange(k_min, k_max, delta): | ||||||
|  |             H = hamiltonian_function(kx, ky) | ||||||
|  |             eigenvalue, vector = np.linalg.eigh(H)  | ||||||
|  |             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||||
|  |             eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)  | ||||||
|  |             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||||
|  |             eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)  | ||||||
|  |             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||||
|  |             eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) | ||||||
|  |             dim = len(index_of_bands) | ||||||
|  |             det_value = 1 | ||||||
|  |             # first dot | ||||||
|  |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|  |             i0 = 0 | ||||||
|  |             for dim1 in index_of_bands: | ||||||
|  |                 j0 = 0 | ||||||
|  |                 for dim2 in index_of_bands: | ||||||
|  |                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) | ||||||
|  |                     j0 += 1 | ||||||
|  |                 i0 += 1 | ||||||
|  |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|  |             det_value = det_value*dot_matrix | ||||||
|  |             # second dot | ||||||
|  |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|  |             i0 = 0 | ||||||
|  |             for dim1 in index_of_bands: | ||||||
|  |                 j0 = 0 | ||||||
|  |                 for dim2 in index_of_bands: | ||||||
|  |                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) | ||||||
|  |                     j0 += 1 | ||||||
|  |                 i0 += 1 | ||||||
|  |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|  |             det_value = det_value*dot_matrix | ||||||
|  |             # third dot | ||||||
|  |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|  |             i0 = 0 | ||||||
|  |             for dim1 in index_of_bands: | ||||||
|  |                 j0 = 0 | ||||||
|  |                 for dim2 in index_of_bands: | ||||||
|  |                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) | ||||||
|  |                     j0 += 1 | ||||||
|  |                 i0 += 1 | ||||||
|  |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|  |             det_value = det_value*dot_matrix | ||||||
|  |             # four dot | ||||||
|  |             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|  |             i0 = 0 | ||||||
|  |             for dim1 in index_of_bands: | ||||||
|  |                 j0 = 0 | ||||||
|  |                 for dim2 in index_of_bands: | ||||||
|  |                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) | ||||||
|  |                     j0 += 1 | ||||||
|  |                 i0 += 1 | ||||||
|  |             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||||
|  |             det_value= det_value*dot_matrix | ||||||
|  |             berry_curvature = cmath.log(det_value)/delta/delta*1j | ||||||
|  |             berry_curvature_array[j00, i00] = berry_curvature | ||||||
|  |             j00 += 1 | ||||||
|  |         i00 += 1 | ||||||
|  |     return k_array, berry_curvature_array | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):  | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     from matplotlib import cm | ||||||
|  |     from matplotlib.ticker import LinearLocator | ||||||
|  |     matrix = np.array(matrix) | ||||||
|  |     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) | ||||||
|  |     plt.subplots_adjust(bottom=0.1, right=0.65)  | ||||||
|  |     x_array, y_array = np.meshgrid(x_array, y_array) | ||||||
|  |     if len(matrix.shape) == 2: | ||||||
|  |         surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||||
|  |     elif len(matrix.shape) == 3: | ||||||
|  |         for i0 in range(matrix.shape[2]): | ||||||
|  |             surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.zaxis.set_major_locator(LinearLocator(5))  | ||||||
|  |     ax.zaxis.set_major_formatter('{x:.2f}')   | ||||||
|  |     if z_min!=None or z_max!=None: | ||||||
|  |         if z_min==None: | ||||||
|  |             z_min=matrix.min() | ||||||
|  |         if z_max==None: | ||||||
|  |             z_max=matrix.max() | ||||||
|  |         ax.set_zlim(z_min, z_max) | ||||||
|  |     ax.tick_params(labelsize=labelsize)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels]  | ||||||
|  |     cax = plt.axes([0.8, 0.1, 0.05, 0.8])  | ||||||
|  |     cbar = fig.colorbar(surf, cax=cax)   | ||||||
|  |     cbar.ax.tick_params(labelsize=labelsize) | ||||||
|  |     for l in cbar.ax.yaxis.get_ticklabels(): | ||||||
|  |         l.set_family('Times New Roman') | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+'.'+format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     fig, ax = plt.subplots() | ||||||
|  |     plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left) | ||||||
|  |     ax.grid() | ||||||
|  |     ax.tick_params(labelsize=labelsize)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels] | ||||||
|  |     ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     if y_min!=None or y_max!=None: | ||||||
|  |         if y_min==None: | ||||||
|  |             y_min=min(y_array) | ||||||
|  |         if y_max==None: | ||||||
|  |             y_max=max(y_array) | ||||||
|  |         ax.set_ylim(y_min, y_max) | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+'.'+format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |     main() | ||||||
		Reference in New Issue
	
	Block a user