This commit is contained in:
guanjihuan 2022-08-28 01:54:15 +08:00
parent c677fb8bca
commit eaaff6b7f9
5 changed files with 117 additions and 0 deletions

View File

@ -28,6 +28,7 @@ def main():
Ny = 20
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1), precision_of_wilson_loop=5)
print('价带:', chern_number)
print()

View File

@ -0,0 +1,116 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/25107
"""
import numpy as np
import math
from math import *
import cmath
import functools
def hamiltonian(kx, ky, Ny, B):
h00 = np.zeros((Ny, Ny), dtype=complex)
h01 = np.zeros((Ny, Ny), dtype=complex)
t = 1
for iy in range(Ny-1):
h00[iy, iy+1] = t
h00[iy+1, iy] = t
h00[Ny-1, 0] = t*cmath.exp(1j*ky)
h00[0, Ny-1] = t*cmath.exp(-1j*ky)
for iy in range(Ny):
h01[iy, iy] = t*cmath.exp(-2*np.pi*1j*B*iy)
matrix = h00 + h01*cmath.exp(1j*kx) + h01.transpose().conj()*cmath.exp(-1j*kx)
return matrix
def main():
Ny = 20
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
chern_number = calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1))
print('价带:', chern_number)
print()
chern_number = calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)+2))
print('价带(包含两个交叉能带):', chern_number)
print()
chern_number = calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(H_k, index_of_bands=range(Ny))
print('所有能带:', chern_number)
# 函数可通过Guan软件包调用。安装方法pip install --upgrade guan
# import guan
# chern_number = guan.calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0)
def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):
delta = 2*math.pi/precision
chern_number = 0
for kx in np.arange(-math.pi, math.pi, delta):
if print_show == 1:
print(kx)
for ky in np.arange(-math.pi, math.pi, delta):
H = hamiltonian_function(kx, ky)
eigenvalue, vector = np.linalg.eigh(H)
H_delta_kx = hamiltonian_function(kx+delta, ky)
eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)
H_delta_ky = hamiltonian_function(kx, ky+delta)
eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)
H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
dim = len(index_of_bands)
det_value = 1
# first dot
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
det_value = det_value*dot_matrix
# second dot
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
det_value = det_value*dot_matrix
# third dot
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
det_value = det_value*dot_matrix
# four dot
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
det_value= det_value*dot_matrix
chern_number += cmath.log(det_value)
chern_number = chern_number/(2*math.pi*1j)
return chern_number
if __name__ == '__main__':
main()