Update matrix_running_time_for_different_num_of_cpu_cores.py
This commit is contained in:
parent
cd9d66c857
commit
249d292bd8
@ -12,36 +12,42 @@ B = np.random.rand(n, n)
|
||||
|
||||
# 矩阵行列式
|
||||
start_time = time.time()
|
||||
det_A = np.linalg.det(A)
|
||||
det_time = time.time() - start_time
|
||||
for _ in range(10):
|
||||
det_A = np.linalg.det(A)
|
||||
det_time = (time.time() - start_time)/10
|
||||
print(f"矩阵行列式时间: {det_time:.3f} 秒")
|
||||
|
||||
# 矩阵乘法
|
||||
start_time = time.time()
|
||||
C = np.dot(A, B)
|
||||
multiply_time = time.time() - start_time
|
||||
for _ in range(10):
|
||||
C = np.dot(A, B)
|
||||
multiply_time = (time.time() - start_time)/10
|
||||
print(f"矩阵乘法时间: {multiply_time:.3f} 秒")
|
||||
|
||||
# 矩阵求逆
|
||||
start_time = time.time()
|
||||
inv_A = np.linalg.inv(A)
|
||||
inv_time = time.time() - start_time
|
||||
for _ in range(10):
|
||||
inv_A = np.linalg.inv(A)
|
||||
inv_time = (time.time() - start_time)/10
|
||||
print(f"矩阵求逆时间: {inv_time:.3f} 秒")
|
||||
|
||||
# 矩阵的秩
|
||||
start_time = time.time()
|
||||
rank_A = np.linalg.matrix_rank(A)
|
||||
rank_time = time.time() - start_time
|
||||
for _ in range(10):
|
||||
rank_A = np.linalg.matrix_rank(A)
|
||||
rank_time = (time.time() - start_time)/10
|
||||
print(f"矩阵的秩时间: {rank_time:.3f} 秒")
|
||||
|
||||
# 矩阵的特征值
|
||||
start_time = time.time()
|
||||
eigenvalues_A = np.linalg.eigvals(A)
|
||||
eigen_time = time.time() - start_time
|
||||
for _ in range(10):
|
||||
eigenvalues_A = np.linalg.eigvals(A)
|
||||
eigen_time = (time.time() - start_time)/10
|
||||
print(f"矩阵特征值时间: {eigen_time:.3f} 秒")
|
||||
|
||||
# 矩阵的特征值和特征向量
|
||||
start_time = time.time()
|
||||
eigenvalues_A, eigenvector_A = np.linalg.eig(A)
|
||||
eigen_time = time.time() - start_time
|
||||
for _ in range(10):
|
||||
eigenvalues_A, eigenvector_A = np.linalg.eig(A)
|
||||
eigen_time = (time.time() - start_time)/10
|
||||
print(f"矩阵特征值和特征向量时间: {eigen_time:.3f} 秒")
|
Loading…
x
Reference in New Issue
Block a user