Create quantum_transport_of_square_lattice_under_magnetic_fields_in_multi_lead_systems_with_guan.py

This commit is contained in:
guanjihuan 2022-01-10 15:49:36 +08:00
parent aa76bba7ca
commit 444daabd6e

View File

@ -0,0 +1,114 @@
"""
This code is supported by the website: https://www.guanjihuan.com
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/18306
"""
import numpy as np
import time
import cmath
import guan
def get_lead_h00(width):
h00 = np.zeros((width, width))
for i0 in range(width-1):
h00[i0, i0+1] = 1
h00[i0+1, i0] = 1
return h00
def get_lead_h01(width):
h01 = np.identity(width)
return h01
def get_center_hamiltonian(Nx, Ny, B):
h = np.zeros((Nx*Ny, Nx*Ny), dtype=complex)
for x0 in range(Nx-1):
for y0 in range(Ny):
h[x0*Ny+y0, (x0+1)*Ny+y0] = 1*cmath.exp(-2*np.pi*1j*B*y0) # x方向的跃迁
h[(x0+1)*Ny+y0, x0*Ny+y0] = 1*cmath.exp(2*np.pi*1j*B*y0)
for x0 in range(Nx):
for y0 in range(Ny-1):
h[x0*Ny+y0, x0*Ny+y0+1] = 1 # y方向的跃迁
h[x0*Ny+y0+1, x0*Ny+y0] = 1
return h
def main():
start_time = time.time()
width = 30
length = 80
fermi_energy_array = np.arange(-4, 4, .02)
# 中心区的哈密顿量
H_cetner = get_center_hamiltonian(Nx=length, Ny=width, B=1/width)
# 电极的h00和h01
lead_h00 = get_lead_h00(width)
lead_h01 = get_lead_h01(width)
transmission_12_array = []
transmission_13_array = []
transmission_14_array = []
transmission_15_array = []
transmission_16_array = []
transmission_1_all_array = []
for fermi_energy in fermi_energy_array:
print(fermi_energy)
# 几何形状如下所示:
# lead2 lead3
# lead1(L) lead4(R)
# lead6 lead5
# 电极到中心区的跃迁矩阵
h_lead1_to_center = np.zeros((width, width*length), dtype=complex)
h_lead2_to_center = np.zeros((width, width*length), dtype=complex)
h_lead3_to_center = np.zeros((width, width*length), dtype=complex)
h_lead4_to_center = np.zeros((width, width*length), dtype=complex)
h_lead5_to_center = np.zeros((width, width*length), dtype=complex)
h_lead6_to_center = np.zeros((width, width*length), dtype=complex)
move = 10
for i0 in range(width):
h_lead1_to_center[i0, i0] = 1
h_lead2_to_center[i0, width*(move+i0)+(width-1)] = 1
h_lead3_to_center[i0, width*(length-move-1-i0)+(width-1)] = 1
h_lead4_to_center[i0, width*(length-1)+i0] = 1
h_lead5_to_center[i0, width*(length-move-1-i0)+0] = 1
h_lead6_to_center[i0, width*(i0+move)+0] = 1
# 自能
self_energy1, gamma1 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, lead_h00, lead_h01, h_lead1_to_center)
self_energy2, gamma2 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, lead_h00, lead_h01, h_lead2_to_center)
self_energy3, gamma3 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, lead_h00, lead_h01, h_lead3_to_center)
self_energy4, gamma4 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, lead_h00, lead_h01, h_lead4_to_center)
self_energy5, gamma5 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, lead_h00, lead_h01, h_lead5_to_center)
self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, lead_h00, lead_h01, h_lead6_to_center)
# 整体格林函数
green = np.linalg.inv(fermi_energy*np.eye(width*length)-H_cetner-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6)
# Transmission
transmission_12 = np.trace(np.dot(np.dot(np.dot(gamma1, green), gamma2), green.transpose().conj()))
transmission_13 = np.trace(np.dot(np.dot(np.dot(gamma1, green), gamma3), green.transpose().conj()))
transmission_14 = np.trace(np.dot(np.dot(np.dot(gamma1, green), gamma4), green.transpose().conj()))
transmission_15 = np.trace(np.dot(np.dot(np.dot(gamma1, green), gamma5), green.transpose().conj()))
transmission_16 = np.trace(np.dot(np.dot(np.dot(gamma1, green), gamma6), green.transpose().conj()))
transmission_12_array.append(np.real(transmission_12))
transmission_13_array.append(np.real(transmission_13))
transmission_14_array.append(np.real(transmission_14))
transmission_15_array.append(np.real(transmission_15))
transmission_16_array.append(np.real(transmission_16))
transmission_1_all_array.append(np.real(transmission_12+transmission_13+transmission_14+transmission_15+transmission_16))
guan.plot(fermi_energy_array, transmission_12_array, xlabel='Fermi energy', ylabel='Transmission_12')
guan.plot(fermi_energy_array, transmission_13_array, xlabel='Fermi energy', ylabel='Transmission_13')
guan.plot(fermi_energy_array, transmission_14_array, xlabel='Fermi energy', ylabel='Transmission_14')
guan.plot(fermi_energy_array, transmission_15_array, xlabel='Fermi energy', ylabel='Transmission_15')
guan.plot(fermi_energy_array, transmission_16_array, xlabel='Fermi energy', ylabel='Transmission_16')
guan.plot(fermi_energy_array, transmission_1_all_array, xlabel='Fermi energy', ylabel='Transmission_1_all')
end_time = time.time()
print('运行时间=', end_time-start_time)
if __name__ == '__main__':
main()