update
This commit is contained in:
parent
e89a3908c7
commit
69b445d625
@ -1,160 +1,160 @@
|
||||
! This code is supported by the website: https://www.guanjihuan.com
|
||||
! The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3785
|
||||
|
||||
module global
|
||||
implicit none
|
||||
double precision sqrt3,Pi
|
||||
parameter(sqrt3=1.7320508075688773d0,Pi=3.14159265358979324d0)
|
||||
end module global
|
||||
|
||||
|
||||
|
||||
program QPI !QPI主程序
|
||||
use blas95
|
||||
use lapack95,only:GETRF,GETRI
|
||||
use global
|
||||
implicit none
|
||||
integer i,j,info,index_0(4)
|
||||
double precision omega,kx,ky,Eigenvalues(4),eta,V0,kx1,kx2,ky1,ky2,qx,qy,time_begin,time_end
|
||||
parameter(eta=0.005)
|
||||
complex*16 H0(4,4),green_0(4,4),green_1(4,4),green_0_k1(4,4),green_0_k2(4,4),A_spectral,V(4,4),gamma_0(4,4),Temp_0(4,4),T(4,4),g_1,rho_1
|
||||
character(len=*):: Flname
|
||||
parameter(Flname='') !可以写上输出文件路径,也可以不写,输出存在当前文件的路径
|
||||
|
||||
omega=0.070d0
|
||||
open(unit=10,file=Flname//'Spectral function_w=0.07.txt')
|
||||
open(unit=20,file=Flname//'QPI_intra_nonmag_w=0.07.txt')
|
||||
call CPU_TIME(time_begin)
|
||||
|
||||
!计算谱函数A(kx,ky)
|
||||
write(10,"(f20.10,x)",advance='no') 0
|
||||
do ky=-Pi,Pi,0.01d0 !谱函数图案的精度
|
||||
write(10,"(f20.10,x)",advance='no') ky
|
||||
enddo
|
||||
write(10,"(a)",advance='yes') ' '
|
||||
do kx=-Pi,Pi,0.01d0 !谱函数图案的精度
|
||||
write(10,"(f20.10,x)",advance='no') kx
|
||||
do ky=-Pi,Pi,0.01d0 !谱函数图案的精度
|
||||
call Greenfunction_clean(kx,ky,eta,omega,green_0)
|
||||
A_spectral=-(green_0(1,1)+green_0(3,3))/Pi
|
||||
write(10,"(f20.10)",advance='no') imag(A_spectral)
|
||||
enddo
|
||||
write(10,"(a)",advance='yes') ' '
|
||||
enddo
|
||||
|
||||
!计算QPI(qx,qy)
|
||||
V0=0.4d0
|
||||
V=0.d0
|
||||
V(1,1)=V0
|
||||
V(2,2)=-V0
|
||||
V(3,3)=V0
|
||||
V(4,4)=-V0
|
||||
gamma_0=0.d0
|
||||
do kx=-Pi,Pi,0.01
|
||||
do ky=-Pi,Pi,0.01
|
||||
call Greenfunction_clean(kx,ky,eta,omega,green_0)
|
||||
do i=1,4
|
||||
do j=1,4
|
||||
gamma_0(i,j)=gamma_0(i,j)+green_0(i,j)*0.01*0.01
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
gamma_0=gamma_0/(2*Pi)/(2*Pi)
|
||||
call gemm(V,gamma_0,Temp_0)
|
||||
do i=1,4
|
||||
Temp_0(i,i)=1-Temp_0(i,i)
|
||||
enddo
|
||||
call GETRF( Temp_0,index_0,info ); call GETRI( Temp_0,index_0,info) !求逆
|
||||
call gemm(Temp_0,V,T) !矩阵乘积
|
||||
write(20,"(f20.10,x)",advance='no') 0
|
||||
do qy=-Pi,Pi,0.01 !QPI图案的精度
|
||||
write(20,"(f20.10,x)",advance='no') qy
|
||||
enddo
|
||||
write(20,"(a)",advance='yes') ' '
|
||||
do qx=-Pi,Pi,0.01 !QPI图案的精度
|
||||
write(*,"(a)",advance='no') 'qx='
|
||||
write(*,*) qx !屏幕输出可以实时查看计算进度
|
||||
write(20,"(f20.10)",advance='no') qx
|
||||
do qy=-Pi,Pi,0.01 !QPI图案的精度
|
||||
rho_1=0.d0
|
||||
do kx1=-Pi,Pi,0.06 !积分的精度
|
||||
kx2=kx1+qx
|
||||
do ky1=-Pi,Pi,0.06 !积分的精度
|
||||
ky2=ky1+qy
|
||||
call Greenfunction_clean(kx1,ky1,eta,omega,green_0_k1)
|
||||
call Greenfunction_clean(kx2,ky2,eta,omega,green_0_k2)
|
||||
call gemm(green_0_k1,T,Temp_0)
|
||||
call gemm(Temp_0, green_0_k2, green_1)
|
||||
g_1=green_1(1,1)-dconjg(green_1(1,1))+green_1(3,3)-dconjg(green_1(3,3))
|
||||
rho_1=rho_1+g_1*0.06*0.06
|
||||
enddo
|
||||
enddo
|
||||
rho_1=rho_1/(2*Pi)/(2*Pi)/(2*Pi)*(0.d0,1.d0)
|
||||
write(20,"(f20.10,x,f20.10)",advance='no') real(rho_1)
|
||||
enddo
|
||||
write(20,"(a)",advance='yes') ' '
|
||||
enddo
|
||||
|
||||
call CPU_TIME(time_end)
|
||||
write(*,"(a)",advance='no') 'The running time of this task='
|
||||
write (*,*) time_end-time_begin !屏幕输出总的计算时间,单位为秒(按照当前步长的精度,在个人计算机上运算大概需要4个小时)
|
||||
end program
|
||||
|
||||
|
||||
|
||||
subroutine Greenfunction_clean(kx,ky,eta,omega,green_0) !干净体系的格林函数
|
||||
use blas95
|
||||
use lapack95,only:GETRF,GETRI
|
||||
use global
|
||||
integer info,index_0(4)
|
||||
double precision, intent(in):: kx,ky,eta,omega
|
||||
complex*16 H0(4,4)
|
||||
complex*16,intent(out):: green_0(4,4)
|
||||
call Hamiltonian(kx,ky,H0)
|
||||
green_0=H0
|
||||
do i=1,4
|
||||
green_0(i,i)=omega+(0.d0,1.d0)*eta-green_0(i,i)
|
||||
enddo
|
||||
call GETRF( green_0,index_0,info ); call GETRI( green_0,index_0,info );
|
||||
end subroutine Greenfunction_clean
|
||||
|
||||
|
||||
|
||||
subroutine Hamiltonian(kx,ky,Matrix) !哈密顿量
|
||||
use global
|
||||
implicit none
|
||||
integer i,j
|
||||
double precision t1,t2,t3,t4,mu,epsilon_x,epsilon_y,epsilon_xy,delta_1,delta_2,delta_0
|
||||
double precision, intent(in):: kx,ky
|
||||
complex*16,intent(out):: Matrix(4,4)
|
||||
|
||||
t1=-1;t2=1.3;t3=-0.85;t4=-0.85;delta_0=0.1;mu=1.54
|
||||
Matrix=(0.d0,0.d0)
|
||||
|
||||
epsilon_x=-2*t1*dcos(kx)-2*t2*dcos(ky)-4*t3*dcos(kx)*dcos(ky)
|
||||
epsilon_y=-2*t1*dcos(ky)-2*t2*dcos(kx)-4*t3*dcos(kx)*dcos(ky)
|
||||
epsilon_xy=-4*t4*dsin(kx)*dsin(ky)
|
||||
delta_1=delta_0*dcos(kx)*dcos(ky)
|
||||
delta_2=delta_1
|
||||
|
||||
Matrix(1,1)=epsilon_x-mu
|
||||
Matrix(2,2)=-epsilon_x+mu
|
||||
Matrix(3,3)=epsilon_y-mu
|
||||
Matrix(4,4)=-epsilon_y+mu
|
||||
|
||||
Matrix(1,2)=delta_1
|
||||
Matrix(2,1)=delta_1
|
||||
Matrix(1,3)=epsilon_xy
|
||||
Matrix(3,1)=epsilon_xy
|
||||
Matrix(1,4)=0.d0
|
||||
Matrix(4,1)=0.d0
|
||||
|
||||
Matrix(2,3)=0.d0
|
||||
Matrix(3,2)=0.d0
|
||||
Matrix(2,4)=-epsilon_xy
|
||||
Matrix(4,2)=-epsilon_xy
|
||||
|
||||
Matrix(3,4)=delta_2
|
||||
Matrix(4,3)=delta_2
|
||||
! This code is supported by the website: https://www.guanjihuan.com
|
||||
! The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3785
|
||||
|
||||
module global
|
||||
implicit none
|
||||
double precision sqrt3,Pi
|
||||
parameter(sqrt3=1.7320508075688773d0,Pi=3.14159265358979324d0)
|
||||
end module global
|
||||
|
||||
|
||||
|
||||
program QPI !QPI主程序
|
||||
use blas95
|
||||
use lapack95,only:GETRF,GETRI
|
||||
use global
|
||||
implicit none
|
||||
integer i,j,info,index_0(4)
|
||||
double precision omega,kx,ky,Eigenvalues(4),eta,V0,kx1,kx2,ky1,ky2,qx,qy,time_begin,time_end
|
||||
parameter(eta=0.005)
|
||||
complex*16 H0(4,4),green_0(4,4),green_1(4,4),green_0_k1(4,4),green_0_k2(4,4),A_spectral,V(4,4),gamma_0(4,4),Temp_0(4,4),T(4,4),g_1,rho_1
|
||||
character(len=*):: Flname
|
||||
parameter(Flname='') !可以写上输出文件路径,也可以不写,输出存在当前文件的路径
|
||||
|
||||
omega=0.070d0
|
||||
open(unit=10,file=Flname//'Spectral function_w=0.07.txt')
|
||||
open(unit=20,file=Flname//'QPI_intra_nonmag_w=0.07.txt')
|
||||
call CPU_TIME(time_begin)
|
||||
|
||||
!计算谱函数A(kx,ky)
|
||||
write(10,"(f20.10,x)",advance='no') 0
|
||||
do ky=-Pi,Pi,0.01d0 !谱函数图案的精度
|
||||
write(10,"(f20.10,x)",advance='no') ky
|
||||
enddo
|
||||
write(10,"(a)",advance='yes') ' '
|
||||
do kx=-Pi,Pi,0.01d0 !谱函数图案的精度
|
||||
write(10,"(f20.10,x)",advance='no') kx
|
||||
do ky=-Pi,Pi,0.01d0 !谱函数图案的精度
|
||||
call Greenfunction_clean(kx,ky,eta,omega,green_0)
|
||||
A_spectral=-(green_0(1,1)+green_0(3,3))/Pi
|
||||
write(10,"(f20.10)",advance='no') imag(A_spectral)
|
||||
enddo
|
||||
write(10,"(a)",advance='yes') ' '
|
||||
enddo
|
||||
|
||||
!计算QPI(qx,qy)
|
||||
V0=0.4d0
|
||||
V=0.d0
|
||||
V(1,1)=V0
|
||||
V(2,2)=-V0
|
||||
V(3,3)=V0
|
||||
V(4,4)=-V0
|
||||
gamma_0=0.d0
|
||||
do kx=-Pi,Pi,0.01
|
||||
do ky=-Pi,Pi,0.01
|
||||
call Greenfunction_clean(kx,ky,eta,omega,green_0)
|
||||
do i=1,4
|
||||
do j=1,4
|
||||
gamma_0(i,j)=gamma_0(i,j)+green_0(i,j)*0.01*0.01
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
gamma_0=gamma_0/(2*Pi)/(2*Pi)
|
||||
call gemm(V,gamma_0,Temp_0)
|
||||
do i=1,4
|
||||
Temp_0(i,i)=1-Temp_0(i,i)
|
||||
enddo
|
||||
call GETRF( Temp_0,index_0,info ); call GETRI( Temp_0,index_0,info) !求逆
|
||||
call gemm(Temp_0,V,T) !矩阵乘积
|
||||
write(20,"(f20.10,x)",advance='no') 0
|
||||
do qy=-Pi,Pi,0.01 !QPI图案的精度
|
||||
write(20,"(f20.10,x)",advance='no') qy
|
||||
enddo
|
||||
write(20,"(a)",advance='yes') ' '
|
||||
do qx=-Pi,Pi,0.01 !QPI图案的精度
|
||||
write(*,"(a)",advance='no') 'qx='
|
||||
write(*,*) qx !屏幕输出可以实时查看计算进度
|
||||
write(20,"(f20.10)",advance='no') qx
|
||||
do qy=-Pi,Pi,0.01 !QPI图案的精度
|
||||
rho_1=0.d0
|
||||
do kx1=-Pi,Pi,0.06 !积分的精度
|
||||
kx2=kx1+qx
|
||||
do ky1=-Pi,Pi,0.06 !积分的精度
|
||||
ky2=ky1+qy
|
||||
call Greenfunction_clean(kx1,ky1,eta,omega,green_0_k1)
|
||||
call Greenfunction_clean(kx2,ky2,eta,omega,green_0_k2)
|
||||
call gemm(green_0_k1,T,Temp_0)
|
||||
call gemm(Temp_0, green_0_k2, green_1)
|
||||
g_1=green_1(1,1)-dconjg(green_1(1,1))+green_1(3,3)-dconjg(green_1(3,3))
|
||||
rho_1=rho_1+g_1*0.06*0.06
|
||||
enddo
|
||||
enddo
|
||||
rho_1=rho_1/(2*Pi)/(2*Pi)/(2*Pi)*(0.d0,1.d0)
|
||||
write(20,"(f20.10,x,f20.10)",advance='no') real(rho_1)
|
||||
enddo
|
||||
write(20,"(a)",advance='yes') ' '
|
||||
enddo
|
||||
|
||||
call CPU_TIME(time_end)
|
||||
write(*,"(a)",advance='no') 'The running time of this task='
|
||||
write (*,*) time_end-time_begin !屏幕输出总的计算时间,单位为秒(按照当前步长的精度,在个人计算机上运算大概需要4个小时)
|
||||
end program
|
||||
|
||||
|
||||
|
||||
subroutine Greenfunction_clean(kx,ky,eta,omega,green_0) !干净体系的格林函数
|
||||
use blas95
|
||||
use lapack95,only:GETRF,GETRI
|
||||
use global
|
||||
integer info,index_0(4)
|
||||
double precision, intent(in):: kx,ky,eta,omega
|
||||
complex*16 H0(4,4)
|
||||
complex*16,intent(out):: green_0(4,4)
|
||||
call Hamiltonian(kx,ky,H0)
|
||||
green_0=H0
|
||||
do i=1,4
|
||||
green_0(i,i)=omega+(0.d0,1.d0)*eta-green_0(i,i)
|
||||
enddo
|
||||
call GETRF( green_0,index_0,info ); call GETRI( green_0,index_0,info );
|
||||
end subroutine Greenfunction_clean
|
||||
|
||||
|
||||
|
||||
subroutine Hamiltonian(kx,ky,Matrix) !哈密顿量
|
||||
use global
|
||||
implicit none
|
||||
integer i,j
|
||||
double precision t1,t2,t3,t4,mu,epsilon_x,epsilon_y,epsilon_xy,delta_1,delta_2,delta_0
|
||||
double precision, intent(in):: kx,ky
|
||||
complex*16,intent(out):: Matrix(4,4)
|
||||
|
||||
t1=-1;t2=1.3;t3=-0.85;t4=-0.85;delta_0=0.1;mu=1.54
|
||||
Matrix=(0.d0,0.d0)
|
||||
|
||||
epsilon_x=-2*t1*dcos(kx)-2*t2*dcos(ky)-4*t3*dcos(kx)*dcos(ky)
|
||||
epsilon_y=-2*t1*dcos(ky)-2*t2*dcos(kx)-4*t3*dcos(kx)*dcos(ky)
|
||||
epsilon_xy=-4*t4*dsin(kx)*dsin(ky)
|
||||
delta_1=delta_0*dcos(kx)*dcos(ky)
|
||||
delta_2=delta_1
|
||||
|
||||
Matrix(1,1)=epsilon_x-mu
|
||||
Matrix(2,2)=-epsilon_x+mu
|
||||
Matrix(3,3)=epsilon_y-mu
|
||||
Matrix(4,4)=-epsilon_y+mu
|
||||
|
||||
Matrix(1,2)=delta_1
|
||||
Matrix(2,1)=delta_1
|
||||
Matrix(1,3)=epsilon_xy
|
||||
Matrix(3,1)=epsilon_xy
|
||||
Matrix(1,4)=0.d0
|
||||
Matrix(4,1)=0.d0
|
||||
|
||||
Matrix(2,3)=0.d0
|
||||
Matrix(3,2)=0.d0
|
||||
Matrix(2,4)=-epsilon_xy
|
||||
Matrix(4,2)=-epsilon_xy
|
||||
|
||||
Matrix(3,4)=delta_2
|
||||
Matrix(4,3)=delta_2
|
||||
end subroutine Hamiltonian
|
@ -1,158 +1,158 @@
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3785
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import ListedColormap
|
||||
import time
|
||||
|
||||
|
||||
def green_function(fermi_energy, k1, k2, hamiltonian): # 计算格林函数
|
||||
matrix0 = hamiltonian(k1, k2)
|
||||
dim = matrix0.shape[0]
|
||||
green = np.linalg.inv(fermi_energy * np.identity(dim) - matrix0)
|
||||
return green
|
||||
|
||||
|
||||
def spectral_function(fermi_energy, k1, k2, hamiltonian): # 计算谱函数
|
||||
dim1 = k1.shape[0]
|
||||
dim2 = k2.shape[0]
|
||||
spectrum = np.zeros((dim1, dim2))
|
||||
i0 = 0
|
||||
for k10 in k1:
|
||||
j0 = 0
|
||||
for k20 in k2:
|
||||
green = green_function(fermi_energy, k10, k20, hamiltonian)
|
||||
spectrum[i0, j0] = (np.imag(green[0,0])+np.imag(green[2,2]))/(-pi)
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
# print(spectrum)
|
||||
print()
|
||||
print('Spectral function显示的网格点 =', k1.shape[0], '*', k1.shape[0], '; 步长 =', k1[1] - k1[0])
|
||||
print()
|
||||
return spectrum
|
||||
|
||||
|
||||
def qpi(fermi_energy, q1, q2, hamiltonian, potential_i): # 计算QPI
|
||||
dim = hamiltonian(0, 0).shape[0]
|
||||
ki1 = np.arange(-pi, pi, 0.01) # 计算gamma_0时,k的积分密度
|
||||
ki2 = np.arange(-pi, pi, 0.01)
|
||||
print('gamma_0的积分网格点 =', ki1.shape[0], '*', ki1.shape[0], '; 步长 =', ki1[1] - ki1[0])
|
||||
gamma_0 = integral_of_green(fermi_energy, ki1, ki2, hamiltonian)/np.square(2*pi)
|
||||
t_matrix = np.dot(np.linalg.inv(np.identity(dim)-np.dot(potential_i, gamma_0)), potential_i)
|
||||
ki1 = np.arange(-pi, pi, 0.06) # 计算induced_local_density时,k的积分密度
|
||||
ki2 = np.arange(-pi, pi, 0.06)
|
||||
print('局域态密度变化的积分网格点 =', ki1.shape[0], '*', ki1.shape[0], '; 步长 =', ki1[1] - ki1[0])
|
||||
print('QPI显示的网格点 =', q1.shape[0], '*', q1.shape[0], '; 步长 =', q1[1] - q1[0])
|
||||
step_length = ki1[1] - ki1[0]
|
||||
induced_local_density = np.zeros((q1.shape[0], q2.shape[0]))*(1+0j)
|
||||
print()
|
||||
i0 = 0
|
||||
for q10 in q1:
|
||||
print('i0=', i0)
|
||||
j0 = 0
|
||||
for q20 in q2:
|
||||
for ki10 in ki1:
|
||||
for ki20 in ki2:
|
||||
green_01 = green_function(fermi_energy, ki10, ki20, hamiltonian)
|
||||
green_02 = green_function(fermi_energy, ki10+q10, ki20+q20, hamiltonian)
|
||||
induced_green = np.dot(np.dot(green_01, t_matrix), green_02)
|
||||
temp = induced_green[0, 0]-induced_green[0, 0].conj()+induced_green[2, 2]-induced_green[2, 2].conj()
|
||||
induced_local_density[i0, j0] = induced_local_density[i0, j0]+temp*np.square(step_length)
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
write_matrix_k1_k2(q1, q2, np.real(induced_local_density*1j/np.square(2*pi)/(2*pi)), 'QPI') # 数据写入文件(临时写入,会被多次替代)
|
||||
induced_local_density = np.real(induced_local_density*1j/np.square(2*pi)/(2*pi))
|
||||
return induced_local_density
|
||||
|
||||
|
||||
def integral_of_green(fermi_energy, ki1, ki2, hamiltonian): # 在计算QPI时需要对格林函数积分
|
||||
dim = hamiltonian(0, 0).shape[0]
|
||||
integral_value = np.zeros((dim, dim))*(1+0j)
|
||||
step_length = ki1[1]-ki1[0]
|
||||
for ki10 in ki1:
|
||||
for ki20 in ki2:
|
||||
green = green_function(fermi_energy, ki10, ki20, hamiltonian)
|
||||
integral_value = integral_value+green*np.square(step_length)
|
||||
return integral_value
|
||||
|
||||
|
||||
def write_matrix_k1_k2(x1, x2, value, filename='matrix_k1_k2'): # 把矩阵数据写入文件(格式化输出)
|
||||
with open(filename+'.txt', 'w') as f:
|
||||
np.set_printoptions(suppress=True) # 取消输出科学记数法
|
||||
f.write('0 ')
|
||||
for x10 in x1:
|
||||
f.write(str(x10)+' ')
|
||||
f.write('\n')
|
||||
i0 = 0
|
||||
for x20 in x2:
|
||||
f.write(str(x20))
|
||||
for j0 in range(x1.shape[0]):
|
||||
f.write(' '+str(value[i0, j0])+' ')
|
||||
f.write('\n')
|
||||
i0 += 1
|
||||
|
||||
|
||||
def plot_contour(x1, x2, value, filename='contour'): # 直接画出contour图像(保存图像)
|
||||
plt.contourf(x1, x2, value) #, cmap=plt.cm.hot)
|
||||
plt.savefig(filename+'.eps')
|
||||
# plt.show()
|
||||
|
||||
|
||||
def hamiltonian(kx, ky): # 体系的哈密顿量
|
||||
t1 = -1; t2 = 1.3; t3 = -0.85; t4 = -0.85; delta_0 = 0.1; mu = 1.54
|
||||
epsilon_x = -2*t1*cos(kx)-2*t2*cos(ky)-4*t3*cos(kx)*cos(ky)
|
||||
epsilon_y = -2*t1*cos(ky)-2*t2*cos(kx)-4*t3*cos(kx)*cos(ky)
|
||||
epsilon_xy = -4*t4*sin(kx)*sin(ky)
|
||||
delta_1 = delta_0*cos(kx)*cos(ky)
|
||||
delta_2 = delta_0*cos(kx)*cos(ky)
|
||||
h = np.zeros((4, 4))
|
||||
h[0, 0] = epsilon_x-mu
|
||||
h[1, 1] = -epsilon_x+mu
|
||||
h[2, 2] = epsilon_y-mu
|
||||
h[3, 3] = -epsilon_y+mu
|
||||
|
||||
h[0, 1] = delta_1
|
||||
h[1, 0] = delta_1
|
||||
h[0, 2] = epsilon_xy
|
||||
h[2, 0] = epsilon_xy
|
||||
h[0, 3] = 0
|
||||
h[3, 0] = 0
|
||||
|
||||
h[1, 2] = 0
|
||||
h[2, 1] = 0
|
||||
h[1, 3] = -epsilon_xy
|
||||
h[3, 1] = -epsilon_xy
|
||||
|
||||
h[2, 3] = delta_2
|
||||
h[3, 2] = delta_2
|
||||
return h
|
||||
|
||||
|
||||
def main(): # 主程序
|
||||
start_clock = time.perf_counter()
|
||||
fermi_energy = 0.07 # 费米能
|
||||
energy_broadening_width = 0.005 # 展宽
|
||||
k1 = np.arange(-pi, pi, 0.01) # 谱函数的图像精度
|
||||
k2 = np.arange(-pi, pi, 0.01)
|
||||
spectrum = spectral_function(fermi_energy+energy_broadening_width*1j, k1, k2, hamiltonian) # 调用谱函数子程序
|
||||
write_matrix_k1_k2(k1, k2, spectrum, 'Spectral_function') # 把谱函数的数据写入文件
|
||||
# plot_contour(k1, k2, spectrum, 'Spectral_function') # 直接显示谱函数的图像(保存图像)
|
||||
|
||||
q1 = np.arange(-pi, pi, 0.01) # QPI数的图像精度
|
||||
q2 = np.arange(-pi, pi, 0.01)
|
||||
potential_i = (0.4+0j)*np.identity(hamiltonian(0, 0).shape[0]) # 杂质势
|
||||
potential_i[1, 1] = - potential_i[1, 1] # for nonmagnetic
|
||||
potential_i[3, 3] = - potential_i[3, 3]
|
||||
induced_local_density = qpi(fermi_energy+energy_broadening_width*1j, q1, q2, hamiltonian, potential_i) # 调用QPI子程序
|
||||
write_matrix_k1_k2(q1, q2, induced_local_density, 'QPI') # 把QPI数据写入文件(这里用的方法是计算结束后一次性把数据写入)
|
||||
# plot_contour(q1, q2, induced_local_density, 'QPI') # 直接显示QPI图像(保存图像)
|
||||
end_clock = time.perf_counter()
|
||||
print('CPU执行时间=', end_clock - start_clock)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
"""
|
||||
This code is supported by the website: https://www.guanjihuan.com
|
||||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/3785
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from math import *
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import ListedColormap
|
||||
import time
|
||||
|
||||
|
||||
def green_function(fermi_energy, k1, k2, hamiltonian): # 计算格林函数
|
||||
matrix0 = hamiltonian(k1, k2)
|
||||
dim = matrix0.shape[0]
|
||||
green = np.linalg.inv(fermi_energy * np.identity(dim) - matrix0)
|
||||
return green
|
||||
|
||||
|
||||
def spectral_function(fermi_energy, k1, k2, hamiltonian): # 计算谱函数
|
||||
dim1 = k1.shape[0]
|
||||
dim2 = k2.shape[0]
|
||||
spectrum = np.zeros((dim1, dim2))
|
||||
i0 = 0
|
||||
for k10 in k1:
|
||||
j0 = 0
|
||||
for k20 in k2:
|
||||
green = green_function(fermi_energy, k10, k20, hamiltonian)
|
||||
spectrum[i0, j0] = (np.imag(green[0,0])+np.imag(green[2,2]))/(-pi)
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
# print(spectrum)
|
||||
print()
|
||||
print('Spectral function显示的网格点 =', k1.shape[0], '*', k1.shape[0], '; 步长 =', k1[1] - k1[0])
|
||||
print()
|
||||
return spectrum
|
||||
|
||||
|
||||
def qpi(fermi_energy, q1, q2, hamiltonian, potential_i): # 计算QPI
|
||||
dim = hamiltonian(0, 0).shape[0]
|
||||
ki1 = np.arange(-pi, pi, 0.01) # 计算gamma_0时,k的积分密度
|
||||
ki2 = np.arange(-pi, pi, 0.01)
|
||||
print('gamma_0的积分网格点 =', ki1.shape[0], '*', ki1.shape[0], '; 步长 =', ki1[1] - ki1[0])
|
||||
gamma_0 = integral_of_green(fermi_energy, ki1, ki2, hamiltonian)/np.square(2*pi)
|
||||
t_matrix = np.dot(np.linalg.inv(np.identity(dim)-np.dot(potential_i, gamma_0)), potential_i)
|
||||
ki1 = np.arange(-pi, pi, 0.06) # 计算induced_local_density时,k的积分密度
|
||||
ki2 = np.arange(-pi, pi, 0.06)
|
||||
print('局域态密度变化的积分网格点 =', ki1.shape[0], '*', ki1.shape[0], '; 步长 =', ki1[1] - ki1[0])
|
||||
print('QPI显示的网格点 =', q1.shape[0], '*', q1.shape[0], '; 步长 =', q1[1] - q1[0])
|
||||
step_length = ki1[1] - ki1[0]
|
||||
induced_local_density = np.zeros((q1.shape[0], q2.shape[0]))*(1+0j)
|
||||
print()
|
||||
i0 = 0
|
||||
for q10 in q1:
|
||||
print('i0=', i0)
|
||||
j0 = 0
|
||||
for q20 in q2:
|
||||
for ki10 in ki1:
|
||||
for ki20 in ki2:
|
||||
green_01 = green_function(fermi_energy, ki10, ki20, hamiltonian)
|
||||
green_02 = green_function(fermi_energy, ki10+q10, ki20+q20, hamiltonian)
|
||||
induced_green = np.dot(np.dot(green_01, t_matrix), green_02)
|
||||
temp = induced_green[0, 0]-induced_green[0, 0].conj()+induced_green[2, 2]-induced_green[2, 2].conj()
|
||||
induced_local_density[i0, j0] = induced_local_density[i0, j0]+temp*np.square(step_length)
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
write_matrix_k1_k2(q1, q2, np.real(induced_local_density*1j/np.square(2*pi)/(2*pi)), 'QPI') # 数据写入文件(临时写入,会被多次替代)
|
||||
induced_local_density = np.real(induced_local_density*1j/np.square(2*pi)/(2*pi))
|
||||
return induced_local_density
|
||||
|
||||
|
||||
def integral_of_green(fermi_energy, ki1, ki2, hamiltonian): # 在计算QPI时需要对格林函数积分
|
||||
dim = hamiltonian(0, 0).shape[0]
|
||||
integral_value = np.zeros((dim, dim))*(1+0j)
|
||||
step_length = ki1[1]-ki1[0]
|
||||
for ki10 in ki1:
|
||||
for ki20 in ki2:
|
||||
green = green_function(fermi_energy, ki10, ki20, hamiltonian)
|
||||
integral_value = integral_value+green*np.square(step_length)
|
||||
return integral_value
|
||||
|
||||
|
||||
def write_matrix_k1_k2(x1, x2, value, filename='matrix_k1_k2'): # 把矩阵数据写入文件(格式化输出)
|
||||
with open(filename+'.txt', 'w') as f:
|
||||
np.set_printoptions(suppress=True) # 取消输出科学记数法
|
||||
f.write('0 ')
|
||||
for x10 in x1:
|
||||
f.write(str(x10)+' ')
|
||||
f.write('\n')
|
||||
i0 = 0
|
||||
for x20 in x2:
|
||||
f.write(str(x20))
|
||||
for j0 in range(x1.shape[0]):
|
||||
f.write(' '+str(value[i0, j0])+' ')
|
||||
f.write('\n')
|
||||
i0 += 1
|
||||
|
||||
|
||||
def plot_contour(x1, x2, value, filename='contour'): # 直接画出contour图像(保存图像)
|
||||
plt.contourf(x1, x2, value) #, cmap=plt.cm.hot)
|
||||
plt.savefig(filename+'.eps')
|
||||
# plt.show()
|
||||
|
||||
|
||||
def hamiltonian(kx, ky): # 体系的哈密顿量
|
||||
t1 = -1; t2 = 1.3; t3 = -0.85; t4 = -0.85; delta_0 = 0.1; mu = 1.54
|
||||
epsilon_x = -2*t1*cos(kx)-2*t2*cos(ky)-4*t3*cos(kx)*cos(ky)
|
||||
epsilon_y = -2*t1*cos(ky)-2*t2*cos(kx)-4*t3*cos(kx)*cos(ky)
|
||||
epsilon_xy = -4*t4*sin(kx)*sin(ky)
|
||||
delta_1 = delta_0*cos(kx)*cos(ky)
|
||||
delta_2 = delta_0*cos(kx)*cos(ky)
|
||||
h = np.zeros((4, 4))
|
||||
h[0, 0] = epsilon_x-mu
|
||||
h[1, 1] = -epsilon_x+mu
|
||||
h[2, 2] = epsilon_y-mu
|
||||
h[3, 3] = -epsilon_y+mu
|
||||
|
||||
h[0, 1] = delta_1
|
||||
h[1, 0] = delta_1
|
||||
h[0, 2] = epsilon_xy
|
||||
h[2, 0] = epsilon_xy
|
||||
h[0, 3] = 0
|
||||
h[3, 0] = 0
|
||||
|
||||
h[1, 2] = 0
|
||||
h[2, 1] = 0
|
||||
h[1, 3] = -epsilon_xy
|
||||
h[3, 1] = -epsilon_xy
|
||||
|
||||
h[2, 3] = delta_2
|
||||
h[3, 2] = delta_2
|
||||
return h
|
||||
|
||||
|
||||
def main(): # 主程序
|
||||
start_clock = time.perf_counter()
|
||||
fermi_energy = 0.07 # 费米能
|
||||
energy_broadening_width = 0.005 # 展宽
|
||||
k1 = np.arange(-pi, pi, 0.01) # 谱函数的图像精度
|
||||
k2 = np.arange(-pi, pi, 0.01)
|
||||
spectrum = spectral_function(fermi_energy+energy_broadening_width*1j, k1, k2, hamiltonian) # 调用谱函数子程序
|
||||
write_matrix_k1_k2(k1, k2, spectrum, 'Spectral_function') # 把谱函数的数据写入文件
|
||||
# plot_contour(k1, k2, spectrum, 'Spectral_function') # 直接显示谱函数的图像(保存图像)
|
||||
|
||||
q1 = np.arange(-pi, pi, 0.01) # QPI数的图像精度
|
||||
q2 = np.arange(-pi, pi, 0.01)
|
||||
potential_i = (0.4+0j)*np.identity(hamiltonian(0, 0).shape[0]) # 杂质势
|
||||
potential_i[1, 1] = - potential_i[1, 1] # for nonmagnetic
|
||||
potential_i[3, 3] = - potential_i[3, 3]
|
||||
induced_local_density = qpi(fermi_energy+energy_broadening_width*1j, q1, q2, hamiltonian, potential_i) # 调用QPI子程序
|
||||
write_matrix_k1_k2(q1, q2, induced_local_density, 'QPI') # 把QPI数据写入文件(这里用的方法是计算结束后一次性把数据写入)
|
||||
# plot_contour(q1, q2, induced_local_density, 'QPI') # 直接显示QPI图像(保存图像)
|
||||
end_clock = time.perf_counter()
|
||||
print('CPU执行时间=', end_clock - start_clock)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user