Update calculation_of_Chern_number_by_Wilson_loop_for_degenerate_case.py
This commit is contained in:
parent
625ae9918b
commit
6c833ecec6
@ -4,6 +4,7 @@ The newest version of this code is on the web page: https://www.guanjihuan.com/a
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import math
|
||||
from math import *
|
||||
import cmath
|
||||
import functools
|
||||
@ -27,24 +28,23 @@ def main():
|
||||
Ny = 20
|
||||
|
||||
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1), precision_of_Wilson_loop=5)
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1), precision_of_wilson_loop=5)
|
||||
print('价带:', chern_number)
|
||||
print()
|
||||
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)+2), precision_of_Wilson_loop=5)
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)+2), precision_of_wilson_loop=5)
|
||||
print('价带(包含两个交叉能带):', chern_number)
|
||||
print()
|
||||
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, index_of_bands=range(Ny), precision_of_Wilson_loop=5)
|
||||
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(Ny), precision_of_wilson_loop=5)
|
||||
print('所有能带:', chern_number)
|
||||
|
||||
# # 函数可通过Guan软件包调用。安装方法:pip install --upgrade guan
|
||||
# import guan
|
||||
# chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
|
||||
# chern_number = guan.calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
|
||||
|
||||
|
||||
def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0):
|
||||
import math
|
||||
def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
|
||||
delta = 2*math.pi/precision_of_plaquettes
|
||||
chern_number = 0
|
||||
for kx in np.arange(-math.pi, math.pi, delta):
|
||||
@ -53,30 +53,30 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
|
||||
for ky in np.arange(-math.pi, math.pi, delta):
|
||||
vector_array = []
|
||||
# line_1
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_2
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0)
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_3
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta)
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
# line_4
|
||||
for i0 in range(precision_of_Wilson_loop):
|
||||
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0)
|
||||
for i0 in range(precision_of_wilson_loop):
|
||||
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
|
||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
vector_array.append(vector_delta)
|
||||
Wilson_loop = 1
|
||||
wilson_loop = 1
|
||||
dim = len(index_of_bands)
|
||||
for i0 in range(len(vector_array)-1):
|
||||
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||
@ -88,7 +88,7 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
|
||||
i02 += 1
|
||||
i01 += 1
|
||||
det_value = np.linalg.det(dot_matrix)
|
||||
Wilson_loop = Wilson_loop*det_value
|
||||
wilson_loop = wilson_loop*det_value
|
||||
dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
|
||||
i01 = 0
|
||||
for dim1 in index_of_bands:
|
||||
@ -98,8 +98,8 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
|
||||
i02 += 1
|
||||
i01 += 1
|
||||
det_value = np.linalg.det(dot_matrix_plus)
|
||||
Wilson_loop = Wilson_loop*det_value
|
||||
arg = np.log(Wilson_loop)/1j
|
||||
wilson_loop = wilson_loop*det_value
|
||||
arg = np.log(wilson_loop)/1j
|
||||
chern_number = chern_number + arg
|
||||
chern_number = chern_number/(2*math.pi)
|
||||
return chern_number
|
||||
|
Loading…
x
Reference in New Issue
Block a user