Update calculation_of_Chern_number_by_Wilson_loop_for_degenerate_case.py

This commit is contained in:
guanjihuan 2022-08-13 07:01:25 +08:00
parent 625ae9918b
commit 6c833ecec6

View File

@ -4,6 +4,7 @@ The newest version of this code is on the web page: https://www.guanjihuan.com/a
"""
import numpy as np
import math
from math import *
import cmath
import functools
@ -27,24 +28,23 @@ def main():
Ny = 20
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1), precision_of_Wilson_loop=5)
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1), precision_of_wilson_loop=5)
print('价带:', chern_number)
print()
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)+2), precision_of_Wilson_loop=5)
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)+2), precision_of_wilson_loop=5)
print('价带(包含两个交叉能带):', chern_number)
print()
chern_number = calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(H_k, index_of_bands=range(Ny), precision_of_Wilson_loop=5)
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(Ny), precision_of_wilson_loop=5)
print('所有能带:', chern_number)
# # 函数可通过Guan软件包调用。安装方法pip install --upgrade guan
# import guan
# chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
# chern_number = guan.calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0):
import math
def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
delta = 2*math.pi/precision_of_plaquettes
chern_number = 0
for kx in np.arange(-math.pi, math.pi, delta):
@ -53,30 +53,30 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
for ky in np.arange(-math.pi, math.pi, delta):
vector_array = []
# line_1
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
for i0 in range(precision_of_wilson_loop):
H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_2
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0)
for i0 in range(precision_of_wilson_loop):
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_3
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta)
for i0 in range(precision_of_wilson_loop):
H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_4
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0)
for i0 in range(precision_of_wilson_loop):
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
Wilson_loop = 1
wilson_loop = 1
dim = len(index_of_bands)
for i0 in range(len(vector_array)-1):
dot_matrix = np.zeros((dim , dim), dtype=complex)
@ -88,7 +88,7 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
i02 += 1
i01 += 1
det_value = np.linalg.det(dot_matrix)
Wilson_loop = Wilson_loop*det_value
wilson_loop = wilson_loop*det_value
dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
i01 = 0
for dim1 in index_of_bands:
@ -98,8 +98,8 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
i02 += 1
i01 += 1
det_value = np.linalg.det(dot_matrix_plus)
Wilson_loop = Wilson_loop*det_value
arg = np.log(Wilson_loop)/1j
wilson_loop = wilson_loop*det_value
arg = np.log(wilson_loop)/1j
chern_number = chern_number + arg
chern_number = chern_number/(2*math.pi)
return chern_number