update
This commit is contained in:
		
							
								
								
									
										17
									
								
								2024.06.03_pytorch_tensor_cat/numpy_concatenate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								2024.06.03_pytorch_tensor_cat/numpy_concatenate.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,17 @@ | |||||||
|  | """ | ||||||
|  | This code is supported by the website: https://www.guanjihuan.com | ||||||
|  | The newest version of this code is on the web page: https://www.guanjihuan.com/archives/41194 | ||||||
|  | """ | ||||||
|  |  | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | a = np.random.rand(2, 3) | ||||||
|  | b = np.random.rand(2, 3) | ||||||
|  |  | ||||||
|  | # 第一维度的数据合并(需要其他的维度保持一致) | ||||||
|  | concatenated_1 = np.concatenate((a, b), axis=0) | ||||||
|  | print(concatenated_1.shape) | ||||||
|  |  | ||||||
|  | # 第二维度的数据合并(需要其他的维度保持一致) | ||||||
|  | concatenated_2 = np.concatenate((a, b), axis=1) | ||||||
|  | print(concatenated_2.shape) | ||||||
							
								
								
									
										40
									
								
								2024.06.03_pytorch_tensor_cat/pytorch_cat.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								2024.06.03_pytorch_tensor_cat/pytorch_cat.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,40 @@ | |||||||
|  | """ | ||||||
|  | This code is supported by the website: https://www.guanjihuan.com | ||||||
|  | The newest version of this code is on the web page: https://www.guanjihuan.com/archives/41194 | ||||||
|  | """ | ||||||
|  |  | ||||||
|  | import torch | ||||||
|  |  | ||||||
|  | # 定义两个张量 | ||||||
|  | tensor1 = torch.randn(2, 3) | ||||||
|  | tensor2 = torch.randn(2, 3) | ||||||
|  | print(tensor1) | ||||||
|  | print(tensor2) | ||||||
|  | print() | ||||||
|  |  | ||||||
|  | # 第一维度的数据合并(需要其他的维度保持一致) | ||||||
|  | result1 = torch.cat((tensor1, tensor2), dim=0) | ||||||
|  | print(result1) | ||||||
|  | print(result1.shape) | ||||||
|  | print() | ||||||
|  |  | ||||||
|  | # 第二维度的数据合并(需要其他的维度保持一致) | ||||||
|  | result2 = torch.cat((tensor1, tensor2), dim=1) | ||||||
|  | print(result2) | ||||||
|  | print(result2.shape) | ||||||
|  | print() | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # 定义多个张量 | ||||||
|  | tensor1 = torch.randn(2, 10) | ||||||
|  | tensor2 = torch.randn(2, 20) | ||||||
|  | tensor3 = torch.randn(2, 30) | ||||||
|  | tensor4 = torch.randn(2, 50) | ||||||
|  |  | ||||||
|  | # 将这些张量放在一个列表中 | ||||||
|  | tensors = [tensor1, tensor2, tensor3, tensor4] | ||||||
|  |  | ||||||
|  | # 第二维度的数据合并(确保所有张量的第一维度相同) | ||||||
|  | result3 = torch.cat(tensors, dim=1) | ||||||
|  | print(result3.shape) | ||||||
		Reference in New Issue
	
	Block a user