update
This commit is contained in:
parent
c677fb8bca
commit
eaaff6b7f9
@ -28,6 +28,7 @@ def main():
|
|||||||
Ny = 20
|
Ny = 20
|
||||||
|
|
||||||
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
|
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
|
||||||
|
|
||||||
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1), precision_of_wilson_loop=5)
|
chern_number = calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1), precision_of_wilson_loop=5)
|
||||||
print('价带:', chern_number)
|
print('价带:', chern_number)
|
||||||
print()
|
print()
|
||||||
|
@ -0,0 +1,116 @@
|
|||||||
|
"""
|
||||||
|
This code is supported by the website: https://www.guanjihuan.com
|
||||||
|
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/25107
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import math
|
||||||
|
from math import *
|
||||||
|
import cmath
|
||||||
|
import functools
|
||||||
|
|
||||||
|
|
||||||
|
def hamiltonian(kx, ky, Ny, B):
|
||||||
|
h00 = np.zeros((Ny, Ny), dtype=complex)
|
||||||
|
h01 = np.zeros((Ny, Ny), dtype=complex)
|
||||||
|
t = 1
|
||||||
|
for iy in range(Ny-1):
|
||||||
|
h00[iy, iy+1] = t
|
||||||
|
h00[iy+1, iy] = t
|
||||||
|
h00[Ny-1, 0] = t*cmath.exp(1j*ky)
|
||||||
|
h00[0, Ny-1] = t*cmath.exp(-1j*ky)
|
||||||
|
for iy in range(Ny):
|
||||||
|
h01[iy, iy] = t*cmath.exp(-2*np.pi*1j*B*iy)
|
||||||
|
matrix = h00 + h01*cmath.exp(1j*kx) + h01.transpose().conj()*cmath.exp(-1j*kx)
|
||||||
|
return matrix
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
Ny = 20
|
||||||
|
|
||||||
|
H_k = functools.partial(hamiltonian, Ny=Ny, B=1/Ny)
|
||||||
|
|
||||||
|
chern_number = calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)-1))
|
||||||
|
print('价带:', chern_number)
|
||||||
|
print()
|
||||||
|
|
||||||
|
chern_number = calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(H_k, index_of_bands=range(int(Ny/2)+2))
|
||||||
|
print('价带(包含两个交叉能带):', chern_number)
|
||||||
|
print()
|
||||||
|
|
||||||
|
chern_number = calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(H_k, index_of_bands=range(Ny))
|
||||||
|
print('所有能带:', chern_number)
|
||||||
|
|
||||||
|
# 函数可通过Guan软件包调用。安装方法:pip install --upgrade guan
|
||||||
|
# import guan
|
||||||
|
# chern_number = guan.calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0)
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):
|
||||||
|
delta = 2*math.pi/precision
|
||||||
|
chern_number = 0
|
||||||
|
for kx in np.arange(-math.pi, math.pi, delta):
|
||||||
|
if print_show == 1:
|
||||||
|
print(kx)
|
||||||
|
for ky in np.arange(-math.pi, math.pi, delta):
|
||||||
|
H = hamiltonian_function(kx, ky)
|
||||||
|
eigenvalue, vector = np.linalg.eigh(H)
|
||||||
|
H_delta_kx = hamiltonian_function(kx+delta, ky)
|
||||||
|
eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)
|
||||||
|
H_delta_ky = hamiltonian_function(kx, ky+delta)
|
||||||
|
eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)
|
||||||
|
H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
|
||||||
|
eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
|
||||||
|
dim = len(index_of_bands)
|
||||||
|
det_value = 1
|
||||||
|
# first dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value = det_value*dot_matrix
|
||||||
|
# second dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value = det_value*dot_matrix
|
||||||
|
# third dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value = det_value*dot_matrix
|
||||||
|
# four dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value= det_value*dot_matrix
|
||||||
|
chern_number += cmath.log(det_value)
|
||||||
|
chern_number = chern_number/(2*math.pi*1j)
|
||||||
|
return chern_number
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
x
Reference in New Issue
Block a user