82 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | ||
| This code is supported by the website: https://www.guanjihuan.com
 | ||
| The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
 | ||
| """
 | ||
| 
 | ||
| import streamlit as st
 | ||
| st.set_page_config(
 | ||
|     page_title="Chat",
 | ||
|     layout='wide'
 | ||
| )
 | ||
| 
 | ||
| choose_load_method = 1
 | ||
| 
 | ||
| if choose_load_method == 0:
 | ||
|     # GPU加载(需要5G显存)
 | ||
|     @st.cache_resource
 | ||
|     def load_bark_model():
 | ||
|         from transformers import AutoProcessor, AutoModel
 | ||
|         processor = AutoProcessor.from_pretrained("suno/bark")
 | ||
|         model = AutoModel.from_pretrained("suno/bark").to("cuda")
 | ||
|         return model, processor
 | ||
|     model, processor = load_bark_model()
 | ||
| 
 | ||
| elif choose_load_method == 1:
 | ||
|     # GPU加载bark-small模型(需要3G显存)
 | ||
|     @st.cache_resource
 | ||
|     def load_bark_model():
 | ||
|         from transformers import AutoProcessor, AutoModel
 | ||
|         processor = AutoProcessor.from_pretrained("suno/bark-small")
 | ||
|         model = AutoModel.from_pretrained("suno/bark-small").to("cuda")
 | ||
|         return model, processor
 | ||
|     model, processor = load_bark_model()
 | ||
| 
 | ||
| elif choose_load_method == 2:
 | ||
|     # CPU加载bark模型(需要9G内存,运行速度慢,不推荐)
 | ||
|     @st.cache_resource
 | ||
|     def load_bark_model():
 | ||
|         from transformers import AutoProcessor, AutoModel
 | ||
|         processor = AutoProcessor.from_pretrained("suno/bark")
 | ||
|         model = AutoModel.from_pretrained("suno/bark")
 | ||
|         return model, processor
 | ||
|     model, processor = load_bark_model()
 | ||
| 
 | ||
| elif choose_load_method == 3:
 | ||
|     # CPU加载bark-small模型(需要5G内存,运行速度慢,不推荐)
 | ||
|     @st.cache_resource
 | ||
|     def load_bark_model():
 | ||
|         from transformers import AutoProcessor, AutoModel
 | ||
|         processor = AutoProcessor.from_pretrained("suno/bark-small")
 | ||
|         model = AutoModel.from_pretrained("suno/bark-small")
 | ||
|         return model, processor
 | ||
|     model, processor = load_bark_model()
 | ||
|     
 | ||
| prompt = st.chat_input("在这里输入您的命令")
 | ||
| 
 | ||
| prompt_placeholder = st.empty()
 | ||
| with prompt_placeholder.container():
 | ||
|     with st.chat_message("user", avatar='user'):
 | ||
|         pass
 | ||
| 
 | ||
| if prompt:
 | ||
|     with prompt_placeholder.container():
 | ||
|         with st.chat_message("user", avatar='user'):
 | ||
|             st.write(prompt)
 | ||
|     st.write('正在转换中,请稍后。')
 | ||
| 
 | ||
|     inputs = processor(
 | ||
|         text=[prompt],
 | ||
|         return_tensors="pt",
 | ||
|     )
 | ||
|     if choose_load_method == 0 or choose_load_method == 1:
 | ||
|         inputs = {key: value.to("cuda") for key, value in inputs.items()}
 | ||
| 
 | ||
|     speech_values = model.generate(**inputs, do_sample=True)
 | ||
| 
 | ||
|     import scipy
 | ||
|     sampling_rate = 24_000
 | ||
|     scipy.io.wavfile.write('./a.wav', rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
 | ||
| 
 | ||
|     audio_file = open('./a.wav', 'rb')
 | ||
|     audio_bytes = audio_file.read()
 | ||
|     st.audio(audio_bytes, format='audio/wav') |