82 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			82 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
This code is supported by the website: https://www.guanjihuan.com
 | 
						||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
 | 
						||
"""
 | 
						||
 | 
						||
import streamlit as st
 | 
						||
st.set_page_config(
 | 
						||
    page_title="Chat",
 | 
						||
    layout='wide'
 | 
						||
)
 | 
						||
 | 
						||
choose_load_method = 1
 | 
						||
 | 
						||
if choose_load_method == 0:
 | 
						||
    # GPU加载(需要5G显存)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_bark_model():
 | 
						||
        from transformers import AutoProcessor, AutoModel
 | 
						||
        processor = AutoProcessor.from_pretrained("suno/bark")
 | 
						||
        model = AutoModel.from_pretrained("suno/bark").to("cuda")
 | 
						||
        return model, processor
 | 
						||
    model, processor = load_bark_model()
 | 
						||
 | 
						||
elif choose_load_method == 1:
 | 
						||
    # GPU加载bark-small模型(需要3G显存)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_bark_model():
 | 
						||
        from transformers import AutoProcessor, AutoModel
 | 
						||
        processor = AutoProcessor.from_pretrained("suno/bark-small")
 | 
						||
        model = AutoModel.from_pretrained("suno/bark-small").to("cuda")
 | 
						||
        return model, processor
 | 
						||
    model, processor = load_bark_model()
 | 
						||
 | 
						||
elif choose_load_method == 2:
 | 
						||
    # CPU加载bark模型(需要9G内存,运行速度慢,不推荐)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_bark_model():
 | 
						||
        from transformers import AutoProcessor, AutoModel
 | 
						||
        processor = AutoProcessor.from_pretrained("suno/bark")
 | 
						||
        model = AutoModel.from_pretrained("suno/bark")
 | 
						||
        return model, processor
 | 
						||
    model, processor = load_bark_model()
 | 
						||
 | 
						||
elif choose_load_method == 3:
 | 
						||
    # CPU加载bark-small模型(需要5G内存,运行速度慢,不推荐)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_bark_model():
 | 
						||
        from transformers import AutoProcessor, AutoModel
 | 
						||
        processor = AutoProcessor.from_pretrained("suno/bark-small")
 | 
						||
        model = AutoModel.from_pretrained("suno/bark-small")
 | 
						||
        return model, processor
 | 
						||
    model, processor = load_bark_model()
 | 
						||
    
 | 
						||
prompt = st.chat_input("在这里输入您的命令")
 | 
						||
 | 
						||
prompt_placeholder = st.empty()
 | 
						||
with prompt_placeholder.container():
 | 
						||
    with st.chat_message("user", avatar='user'):
 | 
						||
        pass
 | 
						||
 | 
						||
if prompt:
 | 
						||
    with prompt_placeholder.container():
 | 
						||
        with st.chat_message("user", avatar='user'):
 | 
						||
            st.write(prompt)
 | 
						||
    st.write('正在转换中,请稍后。')
 | 
						||
 | 
						||
    inputs = processor(
 | 
						||
        text=[prompt],
 | 
						||
        return_tensors="pt",
 | 
						||
    )
 | 
						||
    if choose_load_method == 0 or choose_load_method == 1:
 | 
						||
        inputs = {key: value.to("cuda") for key, value in inputs.items()}
 | 
						||
 | 
						||
    speech_values = model.generate(**inputs, do_sample=True)
 | 
						||
 | 
						||
    import scipy
 | 
						||
    sampling_rate = 24_000
 | 
						||
    scipy.io.wavfile.write('./a.wav', rate=sampling_rate, data=speech_values.cpu().numpy().squeeze())
 | 
						||
 | 
						||
    audio_file = open('./a.wav', 'rb')
 | 
						||
    audio_bytes = audio_file.read()
 | 
						||
    st.audio(audio_bytes, format='audio/wav') |