109 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			109 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
This code is supported by the website: https://www.guanjihuan.com
 | 
						||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
 | 
						||
"""
 | 
						||
 | 
						||
import streamlit as st
 | 
						||
st.set_page_config(
 | 
						||
    page_title="Chat",
 | 
						||
    layout='wide'
 | 
						||
)
 | 
						||
 | 
						||
choose_load_model = 0  # 选择加载的模型(Qwen-7B 或 Qwen-14B)
 | 
						||
 | 
						||
if choose_load_model == 0:
 | 
						||
    # Qwen-7B(需要8G显存)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_model_qwen_7B():
 | 
						||
        from transformers import AutoTokenizer, AutoModelForCausalLM
 | 
						||
        tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True)
 | 
						||
        model = AutoModelForCausalLM.from_pretrained(
 | 
						||
            "Qwen/Qwen-7B-Chat-Int4",
 | 
						||
            device_map="auto",
 | 
						||
            trust_remote_code=True,
 | 
						||
        ).eval()
 | 
						||
        return tokenizer, model
 | 
						||
    tokenizer_qwen_7B, model_qwen_7B = load_model_qwen_7B()
 | 
						||
 | 
						||
elif choose_load_model == 1:
 | 
						||
    # Qwen-14B(需要12G显存)
 | 
						||
    @st.cache_resource
 | 
						||
    def load_model_qwen_14B():
 | 
						||
        from transformers import AutoTokenizer, AutoModelForCausalLM
 | 
						||
        tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True)
 | 
						||
        model = AutoModelForCausalLM.from_pretrained(
 | 
						||
            "Qwen/Qwen-14B-Chat-Int4",
 | 
						||
            device_map="auto",
 | 
						||
            trust_remote_code=True
 | 
						||
        ).eval()
 | 
						||
        return tokenizer, model
 | 
						||
    tokenizer_qwen_14B, model_qwen_14B = load_model_qwen_14B()
 | 
						||
 | 
						||
with st.sidebar:
 | 
						||
    with st.expander('参数', expanded=True):
 | 
						||
        max_length = 409600
 | 
						||
        top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
 | 
						||
        temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session') 
 | 
						||
        def reset_parameter():
 | 
						||
            st.session_state['top_p_session'] = 0.8
 | 
						||
            st.session_state['temperature_session'] = 0.8
 | 
						||
        reset_parameter_button = st.button('重置', on_click=reset_parameter)
 | 
						||
 | 
						||
prompt = st.chat_input("在这里输入您的命令")
 | 
						||
 | 
						||
from transformers.generation import GenerationConfig
 | 
						||
 | 
						||
if choose_load_model == 0:
 | 
						||
    config_qwen_7b = GenerationConfig.from_pretrained(
 | 
						||
        "Qwen/Qwen-7B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature
 | 
						||
    )
 | 
						||
    def chat_response_qwen_7B(query):
 | 
						||
        for response in model_qwen_7B.chat_stream(tokenizer_qwen_7B, query, history=st.session_state.history_qwen, generation_config=config_qwen_7b):
 | 
						||
            message_placeholder_qwen.markdown(response)
 | 
						||
            if stop_button:
 | 
						||
                break
 | 
						||
        st.session_state.history_qwen.append((query, response))
 | 
						||
        st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
 | 
						||
        return response
 | 
						||
 | 
						||
elif choose_load_model == 1:
 | 
						||
    config_qwen_14b = GenerationConfig.from_pretrained(
 | 
						||
        "Qwen/Qwen-14B-Chat-Int4", trust_remote_code=True, resume_download=True, max_length = max_length, top_p = top_p, temperature = temperature
 | 
						||
    )
 | 
						||
    def chat_response_qwen_14B(query):
 | 
						||
        for response in model_qwen_14B.chat_stream(tokenizer_qwen_14B, query, history=st.session_state.history_qwen, generation_config=config_qwen_14b):
 | 
						||
            message_placeholder_qwen.markdown(response)
 | 
						||
            if stop_button:
 | 
						||
                break
 | 
						||
        st.session_state.history_qwen.append((query, response))
 | 
						||
        st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
 | 
						||
        return response
 | 
						||
 | 
						||
def clear_all():
 | 
						||
    st.session_state.history_qwen = []
 | 
						||
    st.session_state.ai_response = []
 | 
						||
 | 
						||
if 'history_qwen' not in st.session_state:
 | 
						||
    st.session_state.history_qwen = []
 | 
						||
if 'ai_response' not in st.session_state:
 | 
						||
    st.session_state.ai_response = []
 | 
						||
 | 
						||
for ai_response in st.session_state.ai_response:
 | 
						||
    with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
 | 
						||
        st.markdown(ai_response["content"])
 | 
						||
 | 
						||
prompt_placeholder = st.chat_message("user", avatar='user')
 | 
						||
with st.chat_message("robot", avatar="assistant"):
 | 
						||
    message_placeholder_qwen = st.empty()
 | 
						||
 | 
						||
if prompt:
 | 
						||
    prompt_placeholder.markdown(prompt)
 | 
						||
    st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
 | 
						||
    stop = st.empty()
 | 
						||
    stop_button = stop.button('停止', key='break_response')
 | 
						||
    if choose_load_model == 0:
 | 
						||
        chat_response_qwen_7B(prompt)
 | 
						||
    elif choose_load_model == 1:
 | 
						||
        chat_response_qwen_14B(prompt)
 | 
						||
    stop.empty()
 | 
						||
button_clear = st.button("清空", on_click=clear_all, key='clear') |