100 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | ||
| This code is supported by the website: https://www.guanjihuan.com
 | ||
| The newest version of this code is on the web page: https://www.guanjihuan.com/archives/43720
 | ||
| """
 | ||
| 
 | ||
| import torch
 | ||
| import torch.nn as nn
 | ||
| import torch.optim as optim
 | ||
| from torch.utils.data import DataLoader, TensorDataset
 | ||
| from torchvision import datasets, transforms
 | ||
| 
 | ||
| transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])  # 数据转换(将图片转换为 Tensor 并进行归一化处理,均值和标准差为 0.5)
 | ||
| train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) # 下载训练数据集
 | ||
| test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) # 下载测试数据集
 | ||
| 
 | ||
| # 训练函数
 | ||
| def train(model, train_loader, criterion, optimizer, num_epochs=5):
 | ||
|     for epoch in range(num_epochs):
 | ||
|         model.train()
 | ||
|         running_loss = 0.0
 | ||
|         correct = 0
 | ||
|         total = 0
 | ||
|         for images, labels in train_loader:
 | ||
|             # print(images.shape)
 | ||
|             optimizer.zero_grad()  # 清除以前的梯度
 | ||
|             outputs = model(images) # 前向传播
 | ||
|             loss = criterion(outputs, labels)
 | ||
|             loss.backward() # 反向传播和优化
 | ||
|             optimizer.step()  
 | ||
|             running_loss += loss.item() 
 | ||
|             _, predicted = torch.max(outputs, 1) # 计算准确率
 | ||
|             total += labels.size(0)
 | ||
|             correct += (predicted == labels).sum().item()     
 | ||
|         avg_loss = running_loss / len(train_loader)
 | ||
|         accuracy = 100 * correct / total
 | ||
|         print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}, Accuracy: {accuracy:.2f}%')
 | ||
| 
 | ||
| # 测试函数
 | ||
| def test(model, test_loader):
 | ||
|     model.eval()  # 设置为评估模式
 | ||
|     correct = 0
 | ||
|     total = 0
 | ||
|     with torch.no_grad():  # 禁用梯度计算
 | ||
|         for images, labels in test_loader:
 | ||
|             outputs = model(images)
 | ||
|             _, predicted = torch.max(outputs, 1)
 | ||
|             total += labels.size(0)
 | ||
|             correct += (predicted == labels).sum().item()
 | ||
|     accuracy = 100 * correct / total
 | ||
|     print(f'Test Accuracy: {accuracy:.2f}%')
 | ||
| 
 | ||
| # 训练和测试
 | ||
| def train_and_test(model, train_loader, test_loader):
 | ||
|     criterion = nn.CrossEntropyLoss()  # 交叉熵损失
 | ||
|     optimizer = optim.Adam(model.parameters(), lr=0.001)
 | ||
|     train(model, train_loader, criterion, optimizer, num_epochs=10)
 | ||
|     test(model, test_loader)
 | ||
| 
 | ||
| # 扁平化数据,并重建 DataLoader(用于全连接神经网络输入端的数据处理)
 | ||
| def flatten_data(data_loader): 
 | ||
|     images_array = []
 | ||
|     labels_array = []
 | ||
|     for images, labels in data_loader:
 | ||
|         images = torch.flatten(images, start_dim=1) # 除去batch维度后,其他维度展平
 | ||
|         images_array.append(images)
 | ||
|         labels_array.append(labels)
 | ||
|     images_array = torch.cat(images_array, dim=0)
 | ||
|     labels_array = torch.cat(labels_array, dim=0)
 | ||
|     dataset_new = TensorDataset(images_array, labels_array)
 | ||
|     loader_new = DataLoader(dataset_new, batch_size=64, shuffle=True)
 | ||
|     return loader_new
 | ||
| 
 | ||
| # 数据加载器
 | ||
| train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
 | ||
| test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
 | ||
| 
 | ||
| # 扁平化数据
 | ||
| train_loader_new = flatten_data(train_loader)
 | ||
| test_loader_new = flatten_data(test_loader)
 | ||
| 
 | ||
| # 安装软件包:pip install --upgrade guan
 | ||
| import guan
 | ||
| 
 | ||
| hidden_size = 64
 | ||
| 
 | ||
| print('---全连接神经网络模型(包含一个隐藏层)---')
 | ||
| model = guan.fully_connected_neural_network_with_one_hidden_layer(input_size=28*28, hidden_size=hidden_size, output_size=10, activation='relu')
 | ||
| train_and_test(model, train_loader_new, test_loader_new)
 | ||
| 
 | ||
| print('---全连接神经网络模型(包含两个隐藏层)---')
 | ||
| model = guan.fully_connected_neural_network_with_two_hidden_layers(input_size=28*28, hidden_size_1=hidden_size, hidden_size_2=hidden_size, output_size=10, activation_1='relu', activation_2='relu')
 | ||
| train_and_test(model, train_loader_new, test_loader_new)
 | ||
| 
 | ||
| print('---全连接神经网络模型(包含三个隐藏层)---')
 | ||
| model = guan.fully_connected_neural_network_with_three_hidden_layers(input_size=28*28, hidden_size_1=hidden_size, hidden_size_2=hidden_size, hidden_size_3=hidden_size, output_size=10, activation_1='relu', activation_2='relu', activation_3='relu')
 | ||
| train_and_test(model, train_loader_new, test_loader_new)
 | ||
| 
 | ||
| print('---卷积神经网络模型(包含两个卷积层和两个全连接层)---')
 | ||
| model = guan.convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=32, out_channels_2=64, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=1, padding_2=1, pooling=1, pooling_kernel_size=2, pooling_stride=2, input_size=7*7*64, hidden_size_1=hidden_size, hidden_size_2=hidden_size, output_size=10)
 | ||
| train_and_test(model, train_loader, test_loader) |