100 lines
4.8 KiB
Python
100 lines
4.8 KiB
Python
"""
|
||
This code is supported by the website: https://www.guanjihuan.com
|
||
The newest version of this code is on the web page: https://www.guanjihuan.com/archives/43720
|
||
"""
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
from torch.utils.data import DataLoader, TensorDataset
|
||
from torchvision import datasets, transforms
|
||
|
||
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))]) # 数据转换(将图片转换为 Tensor 并进行归一化处理,均值和标准差为 0.5)
|
||
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) # 下载训练数据集
|
||
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) # 下载测试数据集
|
||
|
||
# 训练函数
|
||
def train(model, train_loader, criterion, optimizer, num_epochs=5):
|
||
for epoch in range(num_epochs):
|
||
model.train()
|
||
running_loss = 0.0
|
||
correct = 0
|
||
total = 0
|
||
for images, labels in train_loader:
|
||
# print(images.shape)
|
||
optimizer.zero_grad() # 清除以前的梯度
|
||
outputs = model(images) # 前向传播
|
||
loss = criterion(outputs, labels)
|
||
loss.backward() # 反向传播和优化
|
||
optimizer.step()
|
||
running_loss += loss.item()
|
||
_, predicted = torch.max(outputs, 1) # 计算准确率
|
||
total += labels.size(0)
|
||
correct += (predicted == labels).sum().item()
|
||
avg_loss = running_loss / len(train_loader)
|
||
accuracy = 100 * correct / total
|
||
print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}, Accuracy: {accuracy:.2f}%')
|
||
|
||
# 测试函数
|
||
def test(model, test_loader):
|
||
model.eval() # 设置为评估模式
|
||
correct = 0
|
||
total = 0
|
||
with torch.no_grad(): # 禁用梯度计算
|
||
for images, labels in test_loader:
|
||
outputs = model(images)
|
||
_, predicted = torch.max(outputs, 1)
|
||
total += labels.size(0)
|
||
correct += (predicted == labels).sum().item()
|
||
accuracy = 100 * correct / total
|
||
print(f'Test Accuracy: {accuracy:.2f}%')
|
||
|
||
# 训练和测试
|
||
def train_and_test(model, train_loader, test_loader):
|
||
criterion = nn.CrossEntropyLoss() # 交叉熵损失
|
||
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||
train(model, train_loader, criterion, optimizer, num_epochs=10)
|
||
test(model, test_loader)
|
||
|
||
# 扁平化数据,并重建 DataLoader(用于全连接神经网络输入端的数据处理)
|
||
def flatten_data(data_loader):
|
||
images_array = []
|
||
labels_array = []
|
||
for images, labels in data_loader:
|
||
images = torch.flatten(images, start_dim=1) # 除去batch维度后,其他维度展平
|
||
images_array.append(images)
|
||
labels_array.append(labels)
|
||
images_array = torch.cat(images_array, dim=0)
|
||
labels_array = torch.cat(labels_array, dim=0)
|
||
dataset_new = TensorDataset(images_array, labels_array)
|
||
loader_new = DataLoader(dataset_new, batch_size=64, shuffle=True)
|
||
return loader_new
|
||
|
||
# 数据加载器
|
||
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||
|
||
# 扁平化数据
|
||
train_loader_new = flatten_data(train_loader)
|
||
test_loader_new = flatten_data(test_loader)
|
||
|
||
# 安装软件包:pip install --upgrade guan
|
||
import guan
|
||
|
||
hidden_size = 64
|
||
|
||
print('---全连接神经网络模型(包含一个隐藏层)---')
|
||
model = guan.fully_connected_neural_network_with_one_hidden_layer(input_size=28*28, hidden_size=hidden_size, output_size=10, activation='relu')
|
||
train_and_test(model, train_loader_new, test_loader_new)
|
||
|
||
print('---全连接神经网络模型(包含两个隐藏层)---')
|
||
model = guan.fully_connected_neural_network_with_two_hidden_layers(input_size=28*28, hidden_size_1=hidden_size, hidden_size_2=hidden_size, output_size=10, activation_1='relu', activation_2='relu')
|
||
train_and_test(model, train_loader_new, test_loader_new)
|
||
|
||
print('---全连接神经网络模型(包含三个隐藏层)---')
|
||
model = guan.fully_connected_neural_network_with_three_hidden_layers(input_size=28*28, hidden_size_1=hidden_size, hidden_size_2=hidden_size, hidden_size_3=hidden_size, output_size=10, activation_1='relu', activation_2='relu', activation_3='relu')
|
||
train_and_test(model, train_loader_new, test_loader_new)
|
||
|
||
print('---卷积神经网络模型(包含两个卷积层和两个全连接层)---')
|
||
model = guan.convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=32, out_channels_2=64, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=1, padding_2=1, pooling=1, pooling_kernel_size=2, pooling_stride=2, input_size=7*7*64, hidden_size_1=hidden_size, hidden_size_2=hidden_size, output_size=10)
|
||
train_and_test(model, train_loader, test_loader) |