105 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | ||
| This code is supported by the website: https://www.guanjihuan.com
 | ||
| The newest version of this code is on the web page: https://www.guanjihuan.com/archives/38502
 | ||
| """
 | ||
| 
 | ||
| import streamlit as st
 | ||
| st.set_page_config(
 | ||
|     page_title="Chat",
 | ||
|     layout='wide'
 | ||
| )
 | ||
| 
 | ||
| choose_load_method = 1  # 选择加载模型的方式
 | ||
| 
 | ||
| if choose_load_method == 0:
 | ||
|     # 默认加载(需要13G显存)
 | ||
|     @st.cache_resource
 | ||
|     def load_model_chatglm3():
 | ||
|         from transformers import AutoModel, AutoTokenizer
 | ||
|         tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
 | ||
|         model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k",trust_remote_code=True).half().cuda()
 | ||
|         model = model.eval()
 | ||
|         return  model, tokenizer
 | ||
|     model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
 | ||
| 
 | ||
| elif choose_load_method == 1:
 | ||
|     # 量化加载(需要6G显存)
 | ||
|     @st.cache_resource
 | ||
|     def load_model_chatglm3():
 | ||
|         from transformers import AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM
 | ||
|         tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
 | ||
|         nf4_config = BitsAndBytesConfig(
 | ||
|             load_in_4bit=True,
 | ||
|             bnb_4bit_quant_type="nf4",
 | ||
|         )
 | ||
|         model = AutoModelForCausalLM.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True, quantization_config=nf4_config)
 | ||
|         model = model.eval()
 | ||
|         return  model, tokenizer
 | ||
|     model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
 | ||
| 
 | ||
| elif choose_load_method == 2:
 | ||
|     # 在CPU上加载(需要25G内存,对话速度会比较慢,不推荐)
 | ||
|     @st.cache_resource
 | ||
|     def load_model_chatglm3():
 | ||
|         from transformers import AutoModel, AutoTokenizer
 | ||
|         tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
 | ||
|         model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k",trust_remote_code=True).float()
 | ||
|         model = model.eval()
 | ||
|         return  model, tokenizer
 | ||
|     model_chatglm3, tokenizer_chatglm3 = load_model_chatglm3()
 | ||
| 
 | ||
| with st.sidebar:
 | ||
|     with st.expander('参数', expanded=True):
 | ||
|         max_length = 409600
 | ||
|         top_p = st.slider('top_p', 0.01, 1.0, step=0.01, value=0.8, key='top_p_session')
 | ||
|         temperature = st.slider('temperature', 0.51, 1.0, step=0.01, value=0.8, key='temperature_session') 
 | ||
|         def reset_parameter():
 | ||
|             st.session_state['top_p_session'] = 0.8
 | ||
|             st.session_state['temperature_session'] = 0.8
 | ||
|         reset_parameter_button = st.button('重置', on_click=reset_parameter)
 | ||
| 
 | ||
| prompt = st.chat_input("在这里输入您的命令")
 | ||
| 
 | ||
| def chat_response_chatglm3(prompt):
 | ||
|     history, past_key_values = st.session_state.history_ChatGLM3, st.session_state.past_key_values_ChatGLM3
 | ||
|     for response, history, past_key_values in model_chatglm3.stream_chat(tokenizer_chatglm3, prompt, history,
 | ||
|                                                                 past_key_values=past_key_values,
 | ||
|                                                                 max_length=max_length, top_p=top_p,
 | ||
|                                                                 temperature=temperature,
 | ||
|                                                                 return_past_key_values=True):
 | ||
|         message_placeholder_chatglm3.markdown(response)
 | ||
|         if stop_button:
 | ||
|             break
 | ||
|     st.session_state.ai_response.append({"role": "robot", "content": response, "avatar": "assistant"})
 | ||
|     st.session_state.history_ChatGLM3 = history
 | ||
|     st.session_state.past_key_values_ChatGLM3 = past_key_values
 | ||
|     return response
 | ||
| 
 | ||
| def clear_all():
 | ||
|     st.session_state.history_ChatGLM3 = []
 | ||
|     st.session_state.past_key_values_ChatGLM3 = None
 | ||
|     st.session_state.ai_response = []
 | ||
| 
 | ||
| if 'history_ChatGLM3' not in st.session_state:
 | ||
|     st.session_state.history_ChatGLM3 = []
 | ||
| if 'past_key_values_ChatGLM3' not in st.session_state:
 | ||
|     st.session_state.past_key_values_ChatGLM3 = None
 | ||
| if 'ai_response' not in st.session_state:
 | ||
|     st.session_state.ai_response = []
 | ||
| 
 | ||
| for ai_response in st.session_state.ai_response:
 | ||
|     with st.chat_message(ai_response["role"], avatar=ai_response.get("avatar")):
 | ||
|         st.markdown(ai_response["content"])
 | ||
| 
 | ||
| prompt_placeholder = st.chat_message("user", avatar='user')
 | ||
| with st.chat_message("robot", avatar="assistant"):
 | ||
|     message_placeholder_chatglm3 = st.empty()
 | ||
| 
 | ||
| if prompt:
 | ||
|     prompt_placeholder.markdown(prompt)
 | ||
|     st.session_state.ai_response.append({"role": "user", "content": prompt, "avatar": 'user'})
 | ||
|     stop = st.empty()
 | ||
|     stop_button = stop.button('停止', key='break_response')
 | ||
|     chat_response_chatglm3(prompt)
 | ||
|     stop.empty()
 | ||
| button_clear = st.button("清空", on_click=clear_all, key='clear') |