44 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			44 lines
		
	
	
		
			1.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| This code is supported by the website: https://www.guanjihuan.com
 | |
| The newest version of this code is on the web page: https://www.guanjihuan.com/archives/10890
 | |
| """
 | |
| 
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| def main():
 | |
|     A = np.array([[0, 1, 1, -1], [1, 0, -1, 1], [1, -1, 0, 1], [-1, 1, 1, 0]])
 | |
|     eigenvalue, eigenvector = np.linalg.eig(A)
 | |
|     print('矩阵:\n', A)
 | |
|     print('特征值:\n', eigenvalue)
 | |
|     print('特征向量:\n', eigenvector)
 | |
| 
 | |
|     print('\n判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))
 | |
|     print('判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose()))
 | |
| 
 | |
|     print('对角化验证:')
 | |
|     print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector))
 | |
| 
 | |
|     # 施密斯正交化
 | |
|     eigenvector = Schmidt_orthogonalization(eigenvector)
 | |
| 
 | |
|     print('\n施密斯正交化后,特征向量:\n', eigenvector)
 | |
| 
 | |
|     print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector.transpose(), eigenvector))
 | |
|     print('施密斯正交化后,判断是否正交:\n', np.dot(eigenvector, eigenvector.transpose()))
 | |
| 
 | |
|     print('施密斯正交化后,对角化验证:')
 | |
|     print(np.dot(np.dot(eigenvector.transpose(), A), eigenvector))
 | |
| 
 | |
| 
 | |
| def Schmidt_orthogonalization(eigenvector):
 | |
|     num = eigenvector.shape[1]
 | |
|     for i in range(num):
 | |
|         for i0 in range(i):
 | |
|             eigenvector[:, i] = eigenvector[:, i] - eigenvector[:, i0]*np.dot(eigenvector[:, i].transpose().conj(), eigenvector[:, i0])/(np.dot(eigenvector[:, i0].transpose().conj(),eigenvector[:, i0]))
 | |
|         eigenvector[:, i] = eigenvector[:, i]/np.linalg.norm(eigenvector[:, i])
 | |
|     return eigenvector
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     main() |