0.0.114
This commit is contained in:
parent
87ef3a433a
commit
327c06cd6b
@ -89,6 +89,8 @@ hopping = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta
|
||||
|
||||
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0)
|
||||
|
||||
h00, h01 = guan.get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0)
|
||||
|
||||
H0, H1, H2 = guan.get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1)
|
||||
|
||||
H0, H1, H2 = guan.get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1)
|
||||
@ -109,7 +111,7 @@ hamiltonian = guan.hamiltonian_of_cubic_lattice(k1, k2, k3)
|
||||
|
||||
hamiltonian = guan.hamiltonian_of_ssh_model(k, v=0.6, w=1)
|
||||
|
||||
hamiltonian = guan.hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/math.sqrt(3))
|
||||
hamiltonian = guan.hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a=1/math.sqrt(3))
|
||||
|
||||
hamiltonian = guan.effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0)
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.113
|
||||
version = 0.0.114
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||
|
||||
# The current version is guan-0.0.113, updated on July 20, 2022.
|
||||
# The current version is guan-0.0.114, updated on July 20, 2022.
|
||||
|
||||
# Installation: pip install --upgrade guan
|
||||
|
||||
@ -345,9 +345,27 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2,
|
||||
hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1)
|
||||
hopping_2 = np.zeros((4, 4), dtype=complex)
|
||||
hopping_2[3, 0] = 1
|
||||
hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
|
||||
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
|
||||
return hamiltonian
|
||||
|
||||
def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
|
||||
constant = -np.sqrt(3)/2
|
||||
h00 = np.zeros((2, 2), dtype=complex)
|
||||
h00[0, 0] = staggered_potential
|
||||
h00[1, 1] = -staggered_potential
|
||||
h00[0, 1] = -1j*constant*t*np.sin(qy)
|
||||
h00[1, 0] = 1j*constant*t*np.sin(qy)
|
||||
h01 = np.zeros((2, 2), dtype=complex)
|
||||
h01[0, 0] = eta
|
||||
h01[1, 1] = eta
|
||||
if valley_index == 0:
|
||||
h01[0, 1] = constant*t*(-1j/2)
|
||||
h01[1, 0] = constant*t*(-1j/2)
|
||||
else:
|
||||
h01[0, 1] = constant*t*(1j/2)
|
||||
h01[1, 0] = constant*t*(1j/2)
|
||||
return h00, h01
|
||||
|
||||
def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
|
||||
E_s = C+M-4*(D+B)/(a**2)
|
||||
E_p = C-M-4*(D-B)/(a**2)
|
||||
@ -466,11 +484,11 @@ def hamiltonian_of_ssh_model(k, v=0.6, w=1):
|
||||
hamiltonian[1,0] = v+w*cmath.exp(1j*k)
|
||||
return hamiltonian
|
||||
|
||||
def hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/math.sqrt(3)):
|
||||
def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a=1/math.sqrt(3)):
|
||||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
||||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
||||
h0[0, 0] = M
|
||||
h0[1, 1] = -M
|
||||
h0[0, 0] = staggered_potential
|
||||
h0[1, 1] = -staggered_potential
|
||||
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h1[0, 1] = h1[1, 0].conj()
|
||||
hamiltonian = h0 + h1
|
||||
|
Loading…
x
Reference in New Issue
Block a user