0.0.114
This commit is contained in:
		| @@ -2,7 +2,7 @@ | ||||
|  | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # The current version is guan-0.0.113, updated on July 20, 2022. | ||||
| # The current version is guan-0.0.114, updated on July 20, 2022. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| @@ -345,9 +345,27 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, | ||||
|     hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1) | ||||
|     hopping_2 = np.zeros((4, 4), dtype=complex) | ||||
|     hopping_2[3, 0] = 1 | ||||
|     hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): | ||||
|     constant = -np.sqrt(3)/2 | ||||
|     h00 = np.zeros((2, 2), dtype=complex) | ||||
|     h00[0, 0] = staggered_potential | ||||
|     h00[1, 1] = -staggered_potential | ||||
|     h00[0, 1] = -1j*constant*t*np.sin(qy) | ||||
|     h00[1, 0] = 1j*constant*t*np.sin(qy) | ||||
|     h01 = np.zeros((2, 2), dtype=complex) | ||||
|     h01[0, 0] = eta | ||||
|     h01[1, 1] = eta | ||||
|     if valley_index == 0: | ||||
|         h01[0, 1] = constant*t*(-1j/2) | ||||
|         h01[1, 0] = constant*t*(-1j/2) | ||||
|     else: | ||||
|         h01[0, 1] = constant*t*(1j/2) | ||||
|         h01[1, 0] = constant*t*(1j/2) | ||||
|     return h00, h01 | ||||
|  | ||||
| def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
| @@ -466,11 +484,11 @@ def hamiltonian_of_ssh_model(k, v=0.6, w=1): | ||||
|     hamiltonian[1,0] = v+w*cmath.exp(1j*k) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/math.sqrt(3)): | ||||
| def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a=1/math.sqrt(3)): | ||||
|     h0 = np.zeros((2, 2), dtype=complex)  # mass term | ||||
|     h1 = np.zeros((2, 2), dtype=complex)  # nearest hopping | ||||
|     h0[0, 0] = M      | ||||
|     h0[1, 1] = -M | ||||
|     h0[0, 0] = staggered_potential      | ||||
|     h0[1, 1] = -staggered_potential | ||||
|     h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))    | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     hamiltonian = h0 + h1 | ||||
|   | ||||
		Reference in New Issue
	
	Block a user