0.0.91
This commit is contained in:
parent
3406ea8abd
commit
42da58e338
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.90
|
||||
version = 0.0.91
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -367,52 +367,52 @@ def sigma_z():
|
||||
## Kronecker product of Pauli matrices
|
||||
|
||||
def sigma_00():
|
||||
return np.kron(sigma_0(), sigma_0())
|
||||
return np.kron(guan.sigma_0(), guan.sigma_0())
|
||||
|
||||
def sigma_0x():
|
||||
return np.kron(sigma_0(), sigma_x())
|
||||
return np.kron(guan.sigma_0(), guan.sigma_x())
|
||||
|
||||
def sigma_0y():
|
||||
return np.kron(sigma_0(), sigma_y())
|
||||
return np.kron(guan.sigma_0(), guan.sigma_y())
|
||||
|
||||
def sigma_0z():
|
||||
return np.kron(sigma_0(), sigma_z())
|
||||
return np.kron(guan.sigma_0(), guan.sigma_z())
|
||||
|
||||
def sigma_x0():
|
||||
return np.kron(sigma_x(), sigma_0())
|
||||
return np.kron(guan.sigma_x(), guan.sigma_0())
|
||||
|
||||
def sigma_xx():
|
||||
return np.kron(sigma_x(), sigma_x())
|
||||
return np.kron(guan.sigma_x(), guan.sigma_x())
|
||||
|
||||
def sigma_xy():
|
||||
return np.kron(sigma_x(), sigma_y())
|
||||
return np.kron(guan.sigma_x(), guan.sigma_y())
|
||||
|
||||
def sigma_xz():
|
||||
return np.kron(sigma_x(), sigma_z())
|
||||
return np.kron(guan.sigma_x(), guan.sigma_z())
|
||||
|
||||
def sigma_y0():
|
||||
return np.kron(sigma_y(), sigma_0())
|
||||
return np.kron(guan.sigma_y(), guan.sigma_0())
|
||||
|
||||
def sigma_yx():
|
||||
return np.kron(sigma_y(), sigma_x())
|
||||
return np.kron(guan.sigma_y(), guan.sigma_x())
|
||||
|
||||
def sigma_yy():
|
||||
return np.kron(sigma_y(), sigma_y())
|
||||
return np.kron(guan.sigma_y(), guan.sigma_y())
|
||||
|
||||
def sigma_yz():
|
||||
return np.kron(sigma_y(), sigma_z())
|
||||
return np.kron(guan.sigma_y(), guan.sigma_z())
|
||||
|
||||
def sigma_z0():
|
||||
return np.kron(sigma_z(), sigma_0())
|
||||
return np.kron(guan.sigma_z(), guan.sigma_0())
|
||||
|
||||
def sigma_zx():
|
||||
return np.kron(sigma_z(), sigma_x())
|
||||
return np.kron(guan.sigma_z(), guan.sigma_x())
|
||||
|
||||
def sigma_zy():
|
||||
return np.kron(sigma_z(), sigma_y())
|
||||
return np.kron(guan.sigma_z(), guan.sigma_y())
|
||||
|
||||
def sigma_zz():
|
||||
return np.kron(sigma_z(), sigma_z())
|
||||
return np.kron(guan.sigma_z(), guan.sigma_z())
|
||||
|
||||
|
||||
|
||||
@ -1387,7 +1387,7 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01,
|
||||
for fermi_energy in fermi_energy_array:
|
||||
if print_show == 1:
|
||||
print(fermi_energy)
|
||||
conductance_array[i0] = np.real(calculate_conductance(fermi_energy, h00, h01, length))
|
||||
conductance_array[i0] = np.real(guan.calculate_conductance(fermi_energy, h00, h01, length))
|
||||
i0 += 1
|
||||
return conductance_array
|
||||
|
||||
@ -1419,7 +1419,7 @@ def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01,
|
||||
if print_show == 1:
|
||||
print(disorder_intensity)
|
||||
for times in range(calculation_times):
|
||||
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
|
||||
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
|
||||
i0 += 1
|
||||
conductance_array = conductance_array/calculation_times
|
||||
return conductance_array
|
||||
@ -1432,7 +1432,7 @@ def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h
|
||||
if print_show == 1:
|
||||
print(disorder_concentration)
|
||||
for times in range(calculation_times):
|
||||
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
|
||||
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
|
||||
i0 += 1
|
||||
conductance_array = conductance_array/calculation_times
|
||||
return conductance_array
|
||||
@ -1445,7 +1445,7 @@ def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, l
|
||||
if print_show == 1:
|
||||
print(length)
|
||||
for times in range(calculation_times):
|
||||
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
|
||||
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
|
||||
i0 += 1
|
||||
conductance_array = conductance_array/calculation_times
|
||||
return conductance_array
|
||||
@ -1584,8 +1584,8 @@ def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01):
|
||||
lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex)
|
||||
u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex)
|
||||
for dim0 in range(2*dim):
|
||||
if_active = if_active_channel(k_of_channel[dim0])
|
||||
if if_active_channel(k_of_channel[dim0]) == 1:
|
||||
if_active = guan.if_active_channel(k_of_channel[dim0])
|
||||
if guan.if_active_channel(k_of_channel[dim0]) == 1:
|
||||
direction = np.sign(velocity_of_channel[dim0])
|
||||
else:
|
||||
direction = np.sign(np.imag(k_of_channel[dim0]))
|
||||
@ -1648,7 +1648,7 @@ def calculate_scattering_matrix(fermi_energy, h00, h01, length=100):
|
||||
reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right)
|
||||
for dim0 in range(dim):
|
||||
for dim1 in range(dim):
|
||||
if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1])
|
||||
if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1])
|
||||
if if_active == 1:
|
||||
transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1]
|
||||
reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1]
|
||||
|
Loading…
x
Reference in New Issue
Block a user