0.1.13
This commit is contained in:
		| @@ -1 +1 @@ | ||||
| Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. | ||||
| Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com. | ||||
| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.1.12 | ||||
| version = 0.1.13 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.1.12 | ||||
| Version: 0.1.13 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
| @@ -13,4 +13,4 @@ Requires-Python: >=3.6 | ||||
| Description-Content-Type: text/markdown | ||||
| License-File: LICENSE | ||||
|  | ||||
| Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. | ||||
| Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com. | ||||
|   | ||||
| @@ -2,7 +2,20 @@ LICENSE | ||||
| README.md | ||||
| pyproject.toml | ||||
| setup.cfg | ||||
| src/guan/Fourier_transform.py | ||||
| src/guan/Green_functions.py | ||||
| src/guan/Hamiltonian_of_finite_size_systems.py | ||||
| src/guan/Hamiltonian_of_models_in_reciprocal_space.py | ||||
| src/guan/__init__.py | ||||
| src/guan/band_structures_and_wave_functions.py | ||||
| src/guan/basic_functions.py | ||||
| src/guan/data_processing.py | ||||
| src/guan/density_of_states.py | ||||
| src/guan/file_processing.py | ||||
| src/guan/plot_figures.py | ||||
| src/guan/quantum_transport.py | ||||
| src/guan/read_and_write.py | ||||
| src/guan/topological_invariant.py | ||||
| src/guan.egg-info/PKG-INFO | ||||
| src/guan.egg-info/SOURCES.txt | ||||
| src/guan.egg-info/dependency_links.txt | ||||
|   | ||||
							
								
								
									
										135
									
								
								PyPI/src/guan/Fourier_transform.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								PyPI/src/guan/Fourier_transform.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,135 @@ | ||||
| # Module: Fourier_transform | ||||
|  | ||||
| # 通过元胞和跃迁项得到一维的哈密顿量(需要输入k值) | ||||
| def one_dimensional_fourier_transform(k, unit_cell, hopping): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping = np.array(hopping) | ||||
|     hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到二维方格子的哈密顿量(需要输入k值) | ||||
| def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到三维立方格子的哈密顿量(需要输入k值) | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hopping_3 = np.array(hopping_3) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到一维的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| def one_dimensional_fourier_transform_with_k(unit_cell, hopping): | ||||
|     import functools | ||||
|     import guan | ||||
|     hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 通过元胞和跃迁项得到二维方格子的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2): | ||||
|     import functools | ||||
|     import guan | ||||
|     hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 通过元胞和跃迁项得到三维立方格子的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     import functools | ||||
|     import guan | ||||
|     hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(一维) | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector(a1): | ||||
|     import numpy as np | ||||
|     b1 = 2*np.pi/a1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(二维) | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): | ||||
|     import numpy as np | ||||
|     a1 = np.array(a1) | ||||
|     a2 = np.array(a2) | ||||
|     a1 = np.append(a1, 0) | ||||
|     a2 = np.append(a2, 0) | ||||
|     a3 = np.array([0, 0, 1]) | ||||
|     b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b1 = np.delete(b1, 2) | ||||
|     b2 = np.delete(b2, 2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(三维) | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): | ||||
|     import numpy as np | ||||
|     a1 = np.array(a1) | ||||
|     a2 = np.array(a2) | ||||
|     a3 = np.array(a3) | ||||
|     b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3)) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2, b3 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(一维),这里为符号运算 | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): | ||||
|     import sympy | ||||
|     b1 = 2*sympy.pi/a1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(二维),这里为符号运算 | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): | ||||
|     import sympy | ||||
|     a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) | ||||
|     a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0]) | ||||
|     a3 = sympy.Matrix(1, 3, [0, 0, 1]) | ||||
|     cross_a2_a3 = a2.cross(a3) | ||||
|     cross_a3_a1 = a3.cross(a1) | ||||
|     b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) | ||||
|     b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) | ||||
|     b1 = sympy.Matrix(1, 2, [b1[0], b1[1]]) | ||||
|     b2 = sympy.Matrix(1, 2, [b2[0], b2[1]]) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(三维),这里为符号运算 | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): | ||||
|     import sympy | ||||
|     cross_a2_a3 = a2.cross(a3) | ||||
|     cross_a3_a1 = a3.cross(a1) | ||||
|     cross_a1_a2 = a1.cross(a2) | ||||
|     b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) | ||||
|     b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) | ||||
|     b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2, b3 | ||||
							
								
								
									
										153
									
								
								PyPI/src/guan/Green_functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										153
									
								
								PyPI/src/guan/Green_functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,153 @@ | ||||
| # Module: Green_functions | ||||
|  | ||||
| # 输入哈密顿量,得到格林函数 | ||||
| def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||
|     import numpy as np | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian).shape[0] | ||||
|     green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{nn}^{n} | ||||
| def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0]    | ||||
|     green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_nn_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{in}^{n} | ||||
| def green_function_in_n(green_in_n_minus, h01, green_nn_n): | ||||
|     import numpy as np | ||||
|     green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_in_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{ni}^{n} | ||||
| def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
|     green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_ni_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{ii}^{n} | ||||
| def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): | ||||
|     import numpy as np | ||||
|     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_ii_n | ||||
|  | ||||
| # 计算转移矩阵(该矩阵可以用来计算表面格林函数) | ||||
| def transfer_matrix(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) | ||||
|     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) | ||||
|     transfer[dim:2*dim, 0:dim] = np.identity(dim) | ||||
|     transfer[dim:2*dim, dim:2*dim] = 0 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transfer | ||||
|  | ||||
| # 计算电极的表面格林函数 | ||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     fermi_energy = fermi_energy+1e-9*1j | ||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     ind = np.argsort(np.abs(eigenvalue)) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         i0 += 1 | ||||
|     s1 = temp[dim:2*dim, 0:dim] | ||||
|     s2 = temp[0:dim, 0:dim] | ||||
|     s3 = temp[dim:2*dim, dim:2*dim] | ||||
|     s4 = temp[0:dim, dim:2*dim] | ||||
|     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) | ||||
|     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return right_lead_surface, left_lead_surface | ||||
|  | ||||
| # 计算电极的自能(基于Dyson方程的小矩阵形式) | ||||
| def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     h01 = np.array(h01) | ||||
|     right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     guan.statistics_of_guan_package() | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| # 计算电极的自能(基于中心区整体的大矩阵形式) | ||||
| def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     h_LC = np.array(h_LC) | ||||
|     h_CR = np.array(h_CR) | ||||
|     right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     guan.statistics_of_guan_package() | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| # 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算) | ||||
| def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     h_lead_to_center = np.array(h_lead_to_center) | ||||
|     right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center) | ||||
|     gamma = (self_energy - self_energy.transpose().conj())*1j | ||||
|     guan.statistics_of_guan_package() | ||||
|     return self_energy, gamma | ||||
|  | ||||
| # 计算考虑电极自能后的中心区的格林函数 | ||||
| def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     dim = np.array(center_hamiltonian).shape[0] | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green, gamma_right, gamma_left | ||||
|  | ||||
| # 计算用于计算局域电流的格林函数G_n | ||||
| def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy) | ||||
|     G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return G_n | ||||
							
								
								
									
										260
									
								
								PyPI/src/guan/Hamiltonian_of_finite_size_systems.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										260
									
								
								PyPI/src/guan/Hamiltonian_of_finite_size_systems.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,260 @@ | ||||
| # Module: Hamiltonian_of_finite_size_systems | ||||
|  | ||||
| # 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
|     hopping = np.array(hopping) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) | ||||
|     for i0 in range(N): | ||||
|         hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site | ||||
|     for i0 in range(N-1): | ||||
|         hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping | ||||
|         hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() | ||||
|     if period == 1: | ||||
|         hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping | ||||
|         hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)     | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site | ||||
|     for i1 in range(N1-1): | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 | ||||
|             hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2-1): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 | ||||
|             hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() | ||||
|     if period_1 == 1: | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 | ||||
|             hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||
|     if period_2 == 1: | ||||
|         for i1 in range(N1): | ||||
|             hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 | ||||
|             hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hopping_3 = np.array(hopping_3) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)  | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site | ||||
|     for i1 in range(N1-1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 | ||||
|                 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2-1): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 | ||||
|                 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3-1): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() | ||||
|     if period_1 == 1: | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 | ||||
|                 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||
|     if period_2 == 1: | ||||
|         for i1 in range(N1): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 | ||||
|                 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||
|     if period_3 == 1: | ||||
|         for i1 in range(N1): | ||||
|             for i2 in range(N2): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建有限尺寸的SSH模型哈密顿量 | ||||
| def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2*N, 2*N)) | ||||
|     for i in range(N): | ||||
|         hamiltonian[i*2+0, i*2+0] = onsite_1 | ||||
|         hamiltonian[i*2+1, i*2+1] = onsite_2 | ||||
|         hamiltonian[i*2+0, i*2+1] = v | ||||
|         hamiltonian[i*2+1, i*2+0] = v | ||||
|     for i in range(N-1): | ||||
|         hamiltonian[i*2+1, (i+1)*2+0] = w | ||||
|         hamiltonian[(i+1)*2+0, i*2+1] = w | ||||
|     if period==1: | ||||
|         hamiltonian[0, 2*N-1] = w | ||||
|         hamiltonian[2*N-1, 0] = w | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 获取Zigzag边的石墨烯条带的元胞间跃迁 | ||||
| def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): | ||||
|     import numpy as np | ||||
|     hopping = np.zeros((4*N, 4*N), dtype=complex) | ||||
|     for i0 in range(N): | ||||
|         hopping[4*i0+0, 4*i0+0] = eta | ||||
|         hopping[4*i0+1, 4*i0+1] = eta | ||||
|         hopping[4*i0+2, 4*i0+2] = eta | ||||
|         hopping[4*i0+3, 4*i0+3] = eta | ||||
|         hopping[4*i0+1, 4*i0+0] = 1 | ||||
|         hopping[4*i0+2, 4*i0+3] = 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hopping | ||||
|  | ||||
| # 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件) | ||||
| def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4) | ||||
|     hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1) | ||||
|     hopping_2 = np.zeros((4, 4), dtype=complex) | ||||
|     hopping_2[3, 0] = 1 | ||||
|     hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数) | ||||
| def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     constant = -np.sqrt(3)/2 | ||||
|     h00 = np.zeros((2, 2), dtype=complex) | ||||
|     h00[0, 0] = staggered_potential | ||||
|     h00[1, 1] = -staggered_potential | ||||
|     h00[0, 1] = -1j*constant*t*np.sin(qy) | ||||
|     h00[1, 0] = 1j*constant*t*np.sin(qy) | ||||
|     h01 = np.zeros((2, 2), dtype=complex) | ||||
|     h01[0, 0] = eta | ||||
|     h01[1, 1] = eta | ||||
|     if valley_index == 0: | ||||
|         h01[0, 1] = constant*t*(-1j/2) | ||||
|         h01[1, 0] = constant*t*(-1j/2) | ||||
|     else: | ||||
|         h01[0, 1] = constant*t*(1j/2) | ||||
|         h01[1, 0] = constant*t*(1j/2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return h00, h01 | ||||
|  | ||||
| # 获取BHZ模型的在位能和跃迁项 | ||||
| def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
|     V_ss = (D+B)/(a**2) | ||||
|     V_pp = (D-B)/(a**2) | ||||
|     V_sp = -1j*A/(2*a) | ||||
|     H0 = np.zeros((4, 4), dtype=complex) | ||||
|     H1 = np.zeros((4, 4), dtype=complex) | ||||
|     H2 = np.zeros((4, 4), dtype=complex) | ||||
|     H0[0, 0] = E_s | ||||
|     H0[1, 1] = E_p | ||||
|     H0[2, 2] = E_s | ||||
|     H0[3, 3] = E_p | ||||
|     H1[0, 0] = V_ss | ||||
|     H1[1, 1] = V_pp | ||||
|     H1[2, 2] = V_ss | ||||
|     H1[3, 3] = V_pp | ||||
|     H1[0, 1] = V_sp | ||||
|     H1[1, 0] = -np.conj(V_sp) | ||||
|     H1[2, 3] = np.conj(V_sp) | ||||
|     H1[3, 2] = -V_sp | ||||
|     H2[0, 0] = V_ss | ||||
|     H2[1, 1] = V_pp | ||||
|     H2[2, 2] = V_ss | ||||
|     H2[3, 3] = V_pp | ||||
|     H2[0, 1] = 1j*V_sp | ||||
|     H2[1, 0] = 1j*np.conj(V_sp) | ||||
|     H2[2, 3] = -1j*np.conj(V_sp) | ||||
|     H2[3, 2] = -1j*V_sp | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 获取半个BHZ模型的在位能和跃迁项(自旋向上) | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
|     V_ss = (D+B)/(a**2) | ||||
|     V_pp = (D-B)/(a**2) | ||||
|     V_sp = -1j*A/(2*a) | ||||
|     H0 = np.zeros((2, 2), dtype=complex) | ||||
|     H1 = np.zeros((2, 2), dtype=complex) | ||||
|     H2 = np.zeros((2, 2), dtype=complex) | ||||
|     H0[0, 0] = E_s | ||||
|     H0[1, 1] = E_p | ||||
|     H1[0, 0] = V_ss | ||||
|     H1[1, 1] = V_pp | ||||
|     H1[0, 1] = V_sp | ||||
|     H1[1, 0] = -np.conj(V_sp) | ||||
|     H2[0, 0] = V_ss | ||||
|     H2[1, 1] = V_pp | ||||
|     H2[0, 1] = 1j*V_sp | ||||
|     H2[1, 0] = 1j*np.conj(V_sp) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 获取半个BHZ模型的在位能和跃迁项(自旋向下) | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
|     V_ss = (D+B)/(a**2) | ||||
|     V_pp = (D-B)/(a**2) | ||||
|     V_sp = -1j*A/(2*a) | ||||
|     H0 = np.zeros((2, 2), dtype=complex) | ||||
|     H1 = np.zeros((2, 2), dtype=complex) | ||||
|     H2 = np.zeros((2, 2), dtype=complex) | ||||
|     H0[0, 0] = E_s | ||||
|     H0[1, 1] = E_p | ||||
|     H1[0, 0] = V_ss | ||||
|     H1[1, 1] = V_pp | ||||
|     H1[0, 1] = np.conj(V_sp) | ||||
|     H1[1, 0] = -V_sp | ||||
|     H2[0, 0] = V_ss | ||||
|     H2[1, 1] = V_pp | ||||
|     H2[0, 1] = -1j*np.conj(V_sp) | ||||
|     H2[1, 0] = -1j*V_sp | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return H0, H1, H2 | ||||
							
								
								
									
										315
									
								
								PyPI/src/guan/Hamiltonian_of_models_in_reciprocal_space.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										315
									
								
								PyPI/src/guan/Hamiltonian_of_models_in_reciprocal_space.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,315 @@ | ||||
| # Module: Hamiltonian_of_models_in_reciprocal_space | ||||
|  | ||||
| # 一维链的哈密顿量 | ||||
| def hamiltonian_of_simple_chain(k): | ||||
|     import guan | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 二维方格子的哈密顿量 | ||||
| def hamiltonian_of_square_lattice(k1, k2): | ||||
|     import guan | ||||
|     hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维方格子条带的哈密顿量 | ||||
| def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     h00 = np.zeros((N, N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((N, N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N-1):    | ||||
|         h00[i, i+1] = 1 | ||||
|         h00[i+1, i] = 1 | ||||
|     if period == 1: | ||||
|         h00[N-1, 0] = 1 | ||||
|         h00[0, N-1] = 1 | ||||
|     for i in range(N):    | ||||
|         h01[i, i] = 1 | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 三维立方格子的哈密顿量 | ||||
| def hamiltonian_of_cubic_lattice(k1, k2, k3): | ||||
|     import guan | ||||
|     hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # SSH模型的哈密顿量 | ||||
| def hamiltonian_of_ssh_model(k, v=0.6, w=1): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     hamiltonian[0,1] = v+w*cmath.exp(-1j*k) | ||||
|     hamiltonian[1,0] = v+w*cmath.exp(1j*k) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯的哈密顿量 | ||||
| def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     import math | ||||
|     if a == 'default': | ||||
|         a = 1/math.sqrt(3) | ||||
|     h0 = np.zeros((2, 2), dtype=complex)  # mass term | ||||
|     h1 = np.zeros((2, 2), dtype=complex)  # nearest hopping | ||||
|     h0[0, 0] = staggered_potential      | ||||
|     h0[1, 1] = -staggered_potential | ||||
|     h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))    | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     hamiltonian = h0 + h1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯有效模型的哈密顿量 | ||||
| def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     hamiltonian[0, 0] = staggered_potential | ||||
|     hamiltonian[1, 1] = -staggered_potential | ||||
|     constant = -np.sqrt(3)/2 | ||||
|     if valley_index == 0: | ||||
|         hamiltonian[0, 1] = constant*t*(qx-1j*qy) | ||||
|         hamiltonian[1, 0] = constant*t*(qx+1j*qy) | ||||
|     else: | ||||
|         hamiltonian[0, 1] = constant*t*(-qx-1j*qy) | ||||
|         hamiltonian[1, 0] = constant*t*(-qx+1j*qy) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯有效模型离散化后的哈密顿量 | ||||
| def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     hamiltonian[0, 0] = staggered_potential | ||||
|     hamiltonian[1, 1] = -staggered_potential | ||||
|     constant = -np.sqrt(3)/2 | ||||
|     if valley_index == 0: | ||||
|         hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy)) | ||||
|         hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy)) | ||||
|     else: | ||||
|         hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy)) | ||||
|         hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy)) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维Zigzag边石墨烯条带的哈密顿量 | ||||
| def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     h00 = np.zeros((4*N, 4*N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((4*N, 4*N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N): | ||||
|         h00[i*4+0, i*4+0] = M | ||||
|         h00[i*4+1, i*4+1] = -M | ||||
|         h00[i*4+2, i*4+2] = M | ||||
|         h00[i*4+3, i*4+3] = -M | ||||
|         h00[i*4+0, i*4+1] = t | ||||
|         h00[i*4+1, i*4+0] = t | ||||
|         h00[i*4+1, i*4+2] = t | ||||
|         h00[i*4+2, i*4+1] = t | ||||
|         h00[i*4+2, i*4+3] = t | ||||
|         h00[i*4+3, i*4+2] = t | ||||
|     for i in range(N-1): | ||||
|         h00[i*4+3, (i+1)*4+0] = t | ||||
|         h00[(i+1)*4+0, i*4+3] = t | ||||
|     if period == 1: | ||||
|         h00[(N-1)*4+3, 0] = t | ||||
|         h00[0, (N-1)*4+3] = t | ||||
|     for i in range(N): | ||||
|         h01[i*4+1, i*4+0] = t | ||||
|         h01[i*4+2, i*4+3] = t | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # Haldane模型的哈密顿量 | ||||
| def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     import math | ||||
|     if phi == 'default': | ||||
|         phi=math.pi/4 | ||||
|     if a == 'default': | ||||
|         a=1/math.sqrt(3) | ||||
|     h0 = np.zeros((2, 2), dtype=complex)  # mass term | ||||
|     h1 = np.zeros((2, 2), dtype=complex)  # nearest hopping | ||||
|     h2 = np.zeros((2, 2), dtype=complex)  # next nearest hopping | ||||
|     h0[0, 0] = M | ||||
|     h0[1, 1] = -M | ||||
|     h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     hamiltonian = h0 + h1 + h2 + h2.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维Haldane模型条带的哈密顿量 | ||||
| def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     import math | ||||
|     if phi == 'default': | ||||
|         phi=math.pi/4 | ||||
|     h00 = np.zeros((4*N, 4*N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((4*N, 4*N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N): | ||||
|         h00[i*4+0, i*4+0] = M | ||||
|         h00[i*4+1, i*4+1] = -M | ||||
|         h00[i*4+2, i*4+2] = M | ||||
|         h00[i*4+3, i*4+3] = -M | ||||
|         h00[i*4+0, i*4+1] = t1 | ||||
|         h00[i*4+1, i*4+0] = t1 | ||||
|         h00[i*4+1, i*4+2] = t1 | ||||
|         h00[i*4+2, i*4+1] = t1 | ||||
|         h00[i*4+2, i*4+3] = t1 | ||||
|         h00[i*4+3, i*4+2] = t1 | ||||
|         h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi) | ||||
|         h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj() | ||||
|         h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi) | ||||
|         h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj() | ||||
|     for i in range(N-1): | ||||
|         h00[i*4+3, (i+1)*4+0] = t1 | ||||
|         h00[(i+1)*4+0, i*4+3] = t1 | ||||
|         h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi) | ||||
|         h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() | ||||
|         h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) | ||||
|         h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() | ||||
|     if period == 1: | ||||
|         h00[(N-1)*4+3, 0] = t1 | ||||
|         h00[0, (N-1)*4+3] = t1 | ||||
|         h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi) | ||||
|         h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj() | ||||
|         h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi) | ||||
|         h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj() | ||||
|     for i in range(N): | ||||
|         h01[i*4+1, i*4+0] = t1 | ||||
|         h01[i*4+2, i*4+3] = t1 | ||||
|         h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi) | ||||
|         h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi) | ||||
|         h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi) | ||||
|         if i != 0: | ||||
|             h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi) | ||||
|     for i in range(N-1): | ||||
|         h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) | ||||
|     hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 一个量子反常霍尔效应的哈密顿量 | ||||
| def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2) | ||||
|     hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2) | ||||
|     hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2) | ||||
|     hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # BHZ模型的哈密顿量 | ||||
| def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     hamiltonian = np.zeros((4, 4), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
|     d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) | ||||
|     hamiltonian[0, 0] = varepsilon+d3 | ||||
|     hamiltonian[1, 1] = varepsilon-d3 | ||||
|     hamiltonian[0, 1] = np.conj(d1_d2) | ||||
|     hamiltonian[1, 0] = d1_d2 | ||||
|     hamiltonian[2, 2] = varepsilon+d3 | ||||
|     hamiltonian[3, 3] = varepsilon-d3 | ||||
|     hamiltonian[2, 3] = -d1_d2  | ||||
|     hamiltonian[3, 2] = -np.conj(d1_d2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 半BHZ模型的哈密顿量(自旋向上) | ||||
| def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
|     d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) | ||||
|     hamiltonian[0, 0] = varepsilon+d3 | ||||
|     hamiltonian[1, 1] = varepsilon-d3 | ||||
|     hamiltonian[0, 1] = np.conj(d1_d2) | ||||
|     hamiltonian[1, 0] = d1_d2 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 半BHZ模型的哈密顿量(自旋向下) | ||||
| def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
|     d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) | ||||
|     hamiltonian[0, 0] = varepsilon+d3 | ||||
|     hamiltonian[1, 1] = varepsilon-d3 | ||||
|     hamiltonian[0, 1] = -d1_d2  | ||||
|     hamiltonian[1, 0] = -np.conj(d1_d2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # BBH模型的哈密顿量 | ||||
| def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     # label of atoms in a unit cell | ||||
|     # (2) —— (0) | ||||
|     #  |      | | ||||
|     # (1) —— (3)    | ||||
|     hamiltonian = np.zeros((4, 4), dtype=complex) | ||||
|     hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx) | ||||
|     hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx) | ||||
|     hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky) | ||||
|     hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky) | ||||
|     hamiltonian[2, 0] = np.conj(hamiltonian[0, 2]) | ||||
|     hamiltonian[3, 1] = np.conj(hamiltonian[1, 3]) | ||||
|     hamiltonian[3, 0] = np.conj(hamiltonian[0, 3]) | ||||
|     hamiltonian[2, 1] = np.conj(hamiltonian[1, 2]) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # Kagome模型的哈密顿量 | ||||
| def hamiltonian_of_kagome_lattice(kx, ky, t=1): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     k1_dot_a1 = kx | ||||
|     k2_dot_a2 = kx/2+ky*math.sqrt(3)/2 | ||||
|     k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2 | ||||
|     hamiltonian = np.zeros((3, 3), dtype=complex) | ||||
|     hamiltonian[0, 1] = 2*math.cos(k1_dot_a1) | ||||
|     hamiltonian[0, 2] = 2*math.cos(k2_dot_a2) | ||||
|     hamiltonian[1, 2] = 2*math.cos(k3_dot_a3) | ||||
|     hamiltonian = hamiltonian + hamiltonian.transpose().conj() | ||||
|     hamiltonian = -t*hamiltonian | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										204
									
								
								PyPI/src/guan/band_structures_and_wave_functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										204
									
								
								PyPI/src/guan/band_structures_and_wave_functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,204 @@ | ||||
| # Module: band_structures_and_wave_functions | ||||
|  | ||||
| # 计算哈密顿量的本征值 | ||||
| def calculate_eigenvalue(hamiltonian): | ||||
|     import numpy as np | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         eigenvalue = np.real(hamiltonian) | ||||
|     else: | ||||
|         eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvalue | ||||
|  | ||||
| # 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组 | ||||
| def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): | ||||
|     import numpy as np | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
|     i0 = 0 | ||||
|     if np.array(hamiltonian_function(0)).shape==(): | ||||
|         eigenvalue_array = np.zeros((dim_x, 1)) | ||||
|         for x0 in x_array: | ||||
|             hamiltonian = hamiltonian_function(x0) | ||||
|             eigenvalue_array[i0, 0] = np.real(hamiltonian) | ||||
|             i0 += 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0)).shape[0] | ||||
|         eigenvalue_array = np.zeros((dim_x, dim)) | ||||
|         for x0 in x_array: | ||||
|             if print_show==1: | ||||
|                 print(x0) | ||||
|             hamiltonian = hamiltonian_function(x0) | ||||
|             eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|             eigenvalue_array[i0, :] = eigenvalue | ||||
|             i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvalue_array | ||||
|  | ||||
| # 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组 | ||||
| def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):   | ||||
|     import numpy as np | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
|     dim_y = np.array(y_array).shape[0] | ||||
|     if np.array(hamiltonian_function(0,0)).shape==(): | ||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, 1)) | ||||
|         i0 = 0 | ||||
|         for y0 in y_array: | ||||
|             j0 = 0 | ||||
|             for x0 in x_array: | ||||
|                 hamiltonian = hamiltonian_function(x0, y0) | ||||
|                 eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) | ||||
|                 j0 += 1 | ||||
|             i0 += 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0] | ||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, dim)) | ||||
|         i0 = 0 | ||||
|         for y0 in y_array: | ||||
|             j0 = 0 | ||||
|             if print_show==1: | ||||
|                 print(y0) | ||||
|             for x0 in x_array: | ||||
|                 if print_show_more==1: | ||||
|                     print(x0) | ||||
|                 hamiltonian = hamiltonian_function(x0, y0) | ||||
|                 eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|                 eigenvalue_array[i0, j0, :] = eigenvalue | ||||
|                 j0 += 1 | ||||
|             i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvalue_array | ||||
|  | ||||
| # 计算哈密顿量的本征矢 | ||||
| def calculate_eigenvector(hamiltonian): | ||||
|     import numpy as np | ||||
|     eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvector | ||||
|  | ||||
| # 通过二分查找的方法获取和相邻波函数一样规范的波函数 | ||||
| def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     phase_1_pre = 0 | ||||
|     phase_2_pre = np.pi | ||||
|     for i0 in range(n_test): | ||||
|         test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref)) | ||||
|         test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref)) | ||||
|         if test_1 < precision: | ||||
|             phase = phase_1_pre | ||||
|             if show_times==1: | ||||
|                 print('Binary search times=', i0) | ||||
|             break | ||||
|         if i0 == n_test-1: | ||||
|             phase = phase_1_pre | ||||
|             if show_error==1: | ||||
|                 print('Gauge not found with binary search times=', i0) | ||||
|         if test_1 < test_2: | ||||
|             if i0 == 0: | ||||
|                 phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2 | ||||
|                 phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 | ||||
|             else: | ||||
|                 phase_1 = phase_1_pre | ||||
|                 phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 | ||||
|         else: | ||||
|             if i0 == 0: | ||||
|                 phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 | ||||
|                 phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2 | ||||
|             else: | ||||
|                 phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 | ||||
|                 phase_2 = phase_2_pre  | ||||
|         phase_1_pre = phase_1 | ||||
|         phase_2_pre = phase_2 | ||||
|     vector_target = vector_target*cmath.exp(1j*phase) | ||||
|     if show_phase==1: | ||||
|         print('Phase=', phase) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package()   | ||||
|     return vector_target | ||||
|  | ||||
| # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数 | ||||
| def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     vector = np.array(vector) | ||||
|     if index == None: | ||||
|         index = np.argmax(np.abs(vector)) | ||||
|     sign_pre = np.sign(np.imag(vector[index])) | ||||
|     for phase in np.arange(0, 2*np.pi, precision): | ||||
|         sign =  np.sign(np.imag(vector[index]*cmath.exp(1j*phase))) | ||||
|         if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre: | ||||
|             break | ||||
|         sign_pre = sign | ||||
|     vector = vector*cmath.exp(1j*phase) | ||||
|     if np.real(vector[index]) < 0: | ||||
|         vector = -vector | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector | ||||
|  | ||||
| # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量) | ||||
| def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     vector_sum = 0 | ||||
|     Num_k = np.array(vector_array).shape[0] | ||||
|     for i0 in range(Num_k): | ||||
|         vector_sum += np.abs(vector_array[i0]) | ||||
|     index = np.argmax(np.abs(vector_sum)) | ||||
|     for i0 in range(Num_k): | ||||
|         vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector_array | ||||
|  | ||||
| # 旋转两个简并的波函数(说明:参数比较多,效率不高) | ||||
| def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import cmath | ||||
|     vector1 = np.array(vector1) | ||||
|     vector2 = np.array(vector2) | ||||
|     if index1 == None: | ||||
|         index1 = np.argmax(np.abs(vector1)) | ||||
|     if index2 == None: | ||||
|         index2 = np.argmax(np.abs(vector2)) | ||||
|     if np.abs(vector1[index2])>criterion or np.abs(vector2[index1])>criterion: | ||||
|         for theta in np.arange(0, 2*math.pi, precision): | ||||
|             if show_theta==1: | ||||
|                 print(theta) | ||||
|             for phi1 in np.arange(0, 2*math.pi, precision): | ||||
|                 for phi2 in np.arange(0, 2*math.pi, precision): | ||||
|                     vector1_test = cmath.exp(1j*phi1)*vector1*math.cos(theta)+cmath.exp(1j*phi2)*vector2*math.sin(theta) | ||||
|                     vector2_test = -cmath.exp(-1j*phi2)*vector1*math.sin(theta)+cmath.exp(-1j*phi1)*vector2*math.cos(theta) | ||||
|                     if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion: | ||||
|                         vector1 = vector1_test | ||||
|                         vector2 = vector2_test | ||||
|                         break | ||||
|                 if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion: | ||||
|                     break | ||||
|             if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion: | ||||
|                 break | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector1, vector2 | ||||
|  | ||||
| # 旋转两个简并的波函数向量组(说明:参数比较多,效率不高) | ||||
| def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     Num_k = np.array(vector1_array).shape[0] | ||||
|     vector1_sum = 0 | ||||
|     for i0 in range(Num_k): | ||||
|         vector1_sum += np.abs(vector1_array[i0]) | ||||
|     index1 = np.argmax(np.abs(vector1_sum)) | ||||
|     vector2_sum = 0 | ||||
|     for i0 in range(Num_k): | ||||
|         vector2_sum += np.abs(vector2_array[i0]) | ||||
|     index2 = np.argmax(np.abs(vector2_sum)) | ||||
|     for i0 in range(Num_k): | ||||
|         vector1_array[i0], vector2_array[i0] = guan.rotation_of_degenerate_vectors(vector1=vector1_array[i0], vector2=vector2_array[i0], index1=index1, index2=index2, precision=precision, criterion=criterion, show_theta=show_theta) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector1_array, vector2_array | ||||
							
								
								
									
										129
									
								
								PyPI/src/guan/basic_functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								PyPI/src/guan/basic_functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,129 @@ | ||||
| # Module: basic_functions | ||||
|  | ||||
| # 测试 | ||||
| def test(): | ||||
|     print('\nSuccess in the installation of Guan package!\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 泡利矩阵 | ||||
| def sigma_0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.eye(2) | ||||
|  | ||||
| def sigma_x(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.array([[0, 1],[1, 0]]) | ||||
|  | ||||
| def sigma_y(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.array([[0, -1j],[1j, 0]]) | ||||
|  | ||||
| def sigma_z(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.array([[1, 0],[0, -1]]) | ||||
|  | ||||
| # 泡利矩阵的张量积 | ||||
| def sigma_00(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_0()) | ||||
|  | ||||
| def sigma_0x(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_x()) | ||||
|  | ||||
| def sigma_0y(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_y()) | ||||
|  | ||||
| def sigma_0z(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_z()) | ||||
|  | ||||
| def sigma_x0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_0()) | ||||
|  | ||||
| def sigma_xx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_x()) | ||||
|  | ||||
| def sigma_xy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_y()) | ||||
|  | ||||
| def sigma_xz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_z()) | ||||
|  | ||||
| def sigma_y0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_0()) | ||||
|  | ||||
| def sigma_yx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_x()) | ||||
|  | ||||
| def sigma_yy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_y()) | ||||
|  | ||||
| def sigma_yz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_z()) | ||||
|  | ||||
| def sigma_z0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_0()) | ||||
|  | ||||
| def sigma_zx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_x()) | ||||
|  | ||||
| def sigma_zy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_y()) | ||||
|  | ||||
| def sigma_zz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_z()) | ||||
							
								
								
									
										638
									
								
								PyPI/src/guan/data_processing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										638
									
								
								PyPI/src/guan/data_processing.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,638 @@ | ||||
| # Module: data_processing | ||||
|  | ||||
| # 并行计算前的预处理,把参数分成多份 | ||||
| def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0): | ||||
|     import numpy as np | ||||
|     num_all = np.array(parameter_array_all).shape[0] | ||||
|     if num_all%cpus == 0: | ||||
|         num_parameter = int(num_all/cpus)  | ||||
|         parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter] | ||||
|     else: | ||||
|         num_parameter = int(num_all/(cpus-1)) | ||||
|         if task_index != cpus-1: | ||||
|             parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter] | ||||
|         else: | ||||
|             parameter_array = parameter_array_all[task_index*num_parameter:num_all] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return parameter_array | ||||
|  | ||||
| # 在一组数据中找到数值相近的数 | ||||
| def find_close_values_in_one_array(array, precision=1e-2): | ||||
|     new_array = [] | ||||
|     i0 = 0 | ||||
|     for a1 in array: | ||||
|         j0 = 0 | ||||
|         for a2 in array: | ||||
|             if j0>i0 and abs(a1-a2)<precision:  | ||||
|                 new_array.append([a1, a2]) | ||||
|             j0 +=1 | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return new_array | ||||
|  | ||||
| # 寻找能带的简并点 | ||||
| def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2): | ||||
|     import guan | ||||
|     degenerate_k_array = [] | ||||
|     degenerate_eigenvalue_array = [] | ||||
|     i0 = 0 | ||||
|     for k in k_array: | ||||
|         degenerate_points = guan.find_close_values_in_one_array(eigenvalue_array[i0], precision=precision) | ||||
|         if len(degenerate_points) != 0: | ||||
|             degenerate_k_array.append(k) | ||||
|             degenerate_eigenvalue_array.append(degenerate_points) | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return degenerate_k_array, degenerate_eigenvalue_array | ||||
|  | ||||
| # 随机获得一个整数,左闭右闭 | ||||
| def get_random_number(start=0, end=1): | ||||
|     import random | ||||
|     rand_number = random.randint(start, end) # [start, end] | ||||
|     return rand_number | ||||
|  | ||||
| # 选取一个种子生成固定的随机整数 | ||||
| def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10): | ||||
|     import numpy as np | ||||
|     np.random.seed(seed) | ||||
|     rand_num = np.random.randint(x_min, x_max) # 左闭右开[x_min, x_max) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return rand_num | ||||
|  | ||||
| # 使用jieba分词 | ||||
| def divide_text_into_words(text): | ||||
|     import jieba | ||||
|     words = jieba.lcut(text) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return words | ||||
|  | ||||
| # 判断某个字符是中文还是英文或其他 | ||||
| def check_Chinese_or_English(a):   | ||||
|     if '\u4e00' <= a <= '\u9fff' :   | ||||
|         word_type = 'Chinese'   | ||||
|     elif '\x00' <= a <= '\xff':   | ||||
|         word_type = 'English' | ||||
|     else: | ||||
|         word_type = 'Others'  | ||||
|     return word_type | ||||
|  | ||||
| # 统计中英文文本的字数,默认不包括空格 | ||||
| def count_words(text, include_space=0, show_words=0): | ||||
|     import jieba | ||||
|     import guan | ||||
|     words = jieba.lcut(text)   | ||||
|     new_words = [] | ||||
|     if include_space == 0: | ||||
|         for word in words: | ||||
|             if word != ' ': | ||||
|                 new_words.append(word) | ||||
|     else: | ||||
|         new_words = words | ||||
|     num_words = 0 | ||||
|     new_words_2 = [] | ||||
|     for word in new_words: | ||||
|         word_type = guan.check_Chinese_or_English(word[0]) | ||||
|         if word_type == 'Chinese': | ||||
|             num_words += len(word) | ||||
|             for one_word in word: | ||||
|                 new_words_2.append(one_word) | ||||
|         elif word_type == 'English' or 'Others': | ||||
|             num_words += 1 | ||||
|             new_words_2.append(word) | ||||
|     if show_words == 1: | ||||
|         print(new_words_2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return num_words | ||||
|  | ||||
| # 统计运行的日期和时间,写进文件 | ||||
| def statistics_with_day_and_time(content='', filename='a', file_format='.txt'): | ||||
|     import datetime | ||||
|     datetime_today = str(datetime.date.today()) | ||||
|     datetime_time = datetime.datetime.now().strftime('%H:%M:%S') | ||||
|     with open(filename+file_format, 'a', encoding="utf-8") as f2: | ||||
|        if content == '': | ||||
|            f2.write(datetime_today+' '+datetime_time+'\n') | ||||
|        else: | ||||
|            f2.write(datetime_today+' '+datetime_time+' '+content+'\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 统计Python文件中import的数量并排序 | ||||
| def count_number_of_import_statements(filename, file_format='.py', num=1000): | ||||
|     with open(filename+file_format, 'r') as file: | ||||
|         lines = file.readlines() | ||||
|     import_array = [] | ||||
|     for line in lines: | ||||
|         if 'import ' in line: | ||||
|             line = line.strip() | ||||
|             import_array.append(line) | ||||
|     from collections import Counter | ||||
|     import_statement_counter = Counter(import_array).most_common(num) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return import_statement_counter | ||||
|  | ||||
| # 根据一定的字符长度来分割文本 | ||||
| def split_text(text, wrap_width=3000):   | ||||
|     import textwrap   | ||||
|     split_text_list = textwrap.wrap(text, wrap_width) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return split_text_list | ||||
|  | ||||
| # 从网页的标签中获取内容 | ||||
| def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li', 'a']): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import urllib.request | ||||
|     import ssl | ||||
|     ssl._create_default_https_context = ssl._create_unverified_context | ||||
|     html = urllib.request.urlopen(link).read().decode('utf-8') | ||||
|     soup = BeautifulSoup(html, features="lxml") | ||||
|     all_tags = soup.find_all(tags) | ||||
|     content = '' | ||||
|     for tag in all_tags: | ||||
|         text = tag.get_text().replace('\n', '') | ||||
|         if content == '': | ||||
|             content = text | ||||
|         else: | ||||
|             content = content + '\n\n' + text | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return content | ||||
|  | ||||
| # 将RGB转成HEX | ||||
| def rgb_to_hex(rgb, pound=1): | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     if pound==0: | ||||
|         return '%02x%02x%02x' % rgb | ||||
|     else: | ||||
|         return '#%02x%02x%02x' % rgb | ||||
|  | ||||
| # 将HEX转成RGB | ||||
| def hex_to_rgb(hex): | ||||
|     hex = hex.lstrip('#') | ||||
|     length = len(hex) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3)) | ||||
|  | ||||
| # 使用MD5进行散列加密 | ||||
| def encryption_MD5(password, salt=''): | ||||
|     import hashlib | ||||
|     password = salt+password | ||||
|     hashed_password = hashlib.md5(password.encode()).hexdigest() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hashed_password | ||||
|  | ||||
| # 使用SHA-256进行散列加密 | ||||
| def encryption_SHA_256(password, salt=''): | ||||
|     import hashlib | ||||
|     password = salt+password | ||||
|     hashed_password = hashlib.sha256(password.encode()).hexdigest() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hashed_password | ||||
|  | ||||
| # 获取CPU使用率 | ||||
| def get_cpu_usage(interval=1): | ||||
|     import psutil | ||||
|     cpu_usage = psutil.cpu_percent(interval=interval) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return cpu_usage | ||||
|  | ||||
| # 获取本月的所有日期 | ||||
| def get_days_of_the_current_month(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
|     first_day_of_month = today.replace(day=1) | ||||
|     if first_day_of_month.month == 12: | ||||
|         next_month = first_day_of_month.replace(year=first_day_of_month.year + 1, month=1) | ||||
|     else: | ||||
|         next_month = first_day_of_month.replace(month=first_day_of_month.month + 1) | ||||
|     current_date = first_day_of_month | ||||
|     day_array = [] | ||||
|     while current_date < next_month: | ||||
|         if str_or_datetime=='str': | ||||
|             day_array.append(str(current_date)) | ||||
|         elif str_or_datetime=='datetime': | ||||
|             day_array.append(current_date) | ||||
|         current_date += datetime.timedelta(days=1) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return day_array | ||||
|  | ||||
| # 获取上个月份 | ||||
| def get_last_month(): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
|     last_month = today.month - 1 | ||||
|     if last_month == 0: | ||||
|         last_month = 12 | ||||
|         year_of_last_month = today.year - 1 | ||||
|     else: | ||||
|         year_of_last_month = today.year | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return year_of_last_month, last_month | ||||
|  | ||||
| # 获取上上个月份 | ||||
| def get_the_month_before_last(): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
|     the_month_before_last = today.month - 2 | ||||
|     if the_month_before_last == 0: | ||||
|         the_month_before_last = 12  | ||||
|         year_of_the_month_before_last = today.year - 1 | ||||
|     else: | ||||
|         year_of_last_month = today.year | ||||
|     if the_month_before_last == -1: | ||||
|         the_month_before_last = 11 | ||||
|         year_of_the_month_before_last = today.year - 1 | ||||
|     else: | ||||
|         year_of_the_month_before_last = today.year | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return year_of_the_month_before_last, the_month_before_last | ||||
|  | ||||
| # 获取上个月的所有日期 | ||||
| def get_days_of_the_last_month(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     import guan | ||||
|     today = datetime.date.today() | ||||
|     year_of_last_month, last_month = guan.get_last_month() | ||||
|     first_day_of_month = today.replace(year=year_of_last_month, month=last_month, day=1) | ||||
|     if first_day_of_month.month == 12: | ||||
|         next_month = first_day_of_month.replace(year=first_day_of_month.year + 1, month=1) | ||||
|     else: | ||||
|         next_month = first_day_of_month.replace(month=first_day_of_month.month + 1) | ||||
|     current_date = first_day_of_month | ||||
|     day_array = [] | ||||
|     while current_date < next_month: | ||||
|         if str_or_datetime=='str': | ||||
|             day_array.append(str(current_date)) | ||||
|         elif str_or_datetime=='datetime': | ||||
|             day_array.append(current_date) | ||||
|         current_date += datetime.timedelta(days=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return day_array | ||||
|  | ||||
| # 获取上上个月的所有日期 | ||||
| def get_days_of_the_month_before_last(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     import guan | ||||
|     today = datetime.date.today() | ||||
|     year_of_last_last_month, last_last_month = guan.get_the_month_before_last() | ||||
|     first_day_of_month = today.replace(year=year_of_last_last_month, month=last_last_month, day=1) | ||||
|     if first_day_of_month.month == 12: | ||||
|         next_month = first_day_of_month.replace(year=first_day_of_month.year + 1, month=1) | ||||
|     else: | ||||
|         next_month = first_day_of_month.replace(month=first_day_of_month.month + 1) | ||||
|     current_date = first_day_of_month | ||||
|     day_array = [] | ||||
|     while current_date < next_month: | ||||
|         if str_or_datetime=='str': | ||||
|             day_array.append(str(current_date)) | ||||
|         elif str_or_datetime=='datetime': | ||||
|             day_array.append(current_date) | ||||
|         current_date += datetime.timedelta(days=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return day_array | ||||
|  | ||||
| # 获取所有股票 | ||||
| def all_stocks(): | ||||
|     import numpy as np | ||||
|     import akshare as ak | ||||
|     stocks = ak.stock_zh_a_spot_em() | ||||
|     title = np.array(stocks.columns) | ||||
|     stock_data = stocks.values | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return title, stock_data | ||||
|  | ||||
| # 获取所有股票的代码 | ||||
| def all_stock_symbols(): | ||||
|     import guan | ||||
|     title, stock_data = guan.all_stocks() | ||||
|     stock_symbols = stock_data[:, 1] | ||||
|     guan.statistics_of_guan_package() | ||||
|     return stock_symbols | ||||
|  | ||||
| # 从股票代码获取股票名称 | ||||
| def find_stock_name_from_symbol(symbol='000002'): | ||||
|     import guan | ||||
|     title, stock_data = guan.all_stocks() | ||||
|     for stock in stock_data: | ||||
|         if symbol in stock: | ||||
|            stock_name = stock[2] | ||||
|     guan.statistics_of_guan_package() | ||||
|     return stock_name | ||||
|  | ||||
| # 获取单个股票的历史数据 | ||||
| def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101'): | ||||
|     # period = 'daily' | ||||
|     # period = 'weekly' | ||||
|     # period = 'monthly' | ||||
|     import numpy as np | ||||
|     import akshare as ak | ||||
|     stock = ak.stock_zh_a_hist(symbol=symbol, period=period, start_date=start_date, end_date=end_date) | ||||
|     title = np.array(stock.columns) | ||||
|     stock_data = stock.values[::-1] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return title, stock_data | ||||
|  | ||||
| # 播放学术单词 | ||||
| def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translation=1, show_link=1, translation_time=2, rest_time=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
|     import urllib.request | ||||
|     import requests | ||||
|     import os | ||||
|     import pygame | ||||
|     import time | ||||
|     import ssl | ||||
|     import random | ||||
|     ssl._create_default_https_context = ssl._create_unverified_context | ||||
|     html = urllib.request.urlopen("https://www.guanjihuan.com/archives/4418").read().decode('utf-8') | ||||
|     if bre_or_ame == 'ame': | ||||
|         directory = 'words_mp3_ameProns/' | ||||
|     elif bre_or_ame == 'bre': | ||||
|         directory = 'words_mp3_breProns/' | ||||
|     exist_directory = os.path.exists(directory) | ||||
|     html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8') | ||||
|     if exist_directory == 0: | ||||
|         os.makedirs(directory) | ||||
|     soup = BeautifulSoup(html, features='lxml') | ||||
|     contents = re.findall('<h2.*?</a></p>', html, re.S) | ||||
|     if random_on==1: | ||||
|         random.shuffle(contents) | ||||
|     if reverse==1: | ||||
|         contents.reverse() | ||||
|     for content in contents: | ||||
|         soup2 = BeautifulSoup(content, features='lxml') | ||||
|         all_h2 = soup2.find_all('h2') | ||||
|         for h2 in all_h2: | ||||
|             if re.search('\d*. ', h2.get_text()): | ||||
|                 word = re.findall('[a-zA-Z].*', h2.get_text(), re.S)[0] | ||||
|                 exist = os.path.exists(directory+word+'.mp3') | ||||
|                 if not exist: | ||||
|                     try: | ||||
|                         if re.search(word, html_file): | ||||
|                             r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True) | ||||
|                             with open(directory+word+'.mp3', 'wb') as f: | ||||
|                                 for chunk in r.iter_content(chunk_size=32): | ||||
|                                     f.write(chunk) | ||||
|                     except: | ||||
|                         pass | ||||
|                 print(h2.get_text()) | ||||
|                 try: | ||||
|                     pygame.mixer.init() | ||||
|                     track = pygame.mixer.music.load(directory+word+'.mp3') | ||||
|                     pygame.mixer.music.play() | ||||
|                     if show_link==1: | ||||
|                         print('https://www.ldoceonline.com/dictionary/'+word) | ||||
|                 except: | ||||
|                     pass | ||||
|                 translation = re.findall('<p>.*?</p>', content, re.S)[0][3:-4] | ||||
|                 if show_translation==1: | ||||
|                     time.sleep(translation_time) | ||||
|                     print(translation) | ||||
|                 time.sleep(rest_time) | ||||
|                 pygame.mixer.music.stop() | ||||
|                 print() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 播放挑选过后的学术单词 | ||||
| def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
|     import urllib.request | ||||
|     import requests | ||||
|     import os | ||||
|     import pygame | ||||
|     import time | ||||
|     import ssl | ||||
|     import random | ||||
|     ssl._create_default_https_context = ssl._create_unverified_context | ||||
|     html = urllib.request.urlopen("https://www.guanjihuan.com/archives/24732").read().decode('utf-8') | ||||
|     if bre_or_ame == 'ame': | ||||
|         directory = 'words_mp3_ameProns/' | ||||
|     elif bre_or_ame == 'bre': | ||||
|         directory = 'words_mp3_breProns/' | ||||
|     exist_directory = os.path.exists(directory) | ||||
|     html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8') | ||||
|     if exist_directory == 0: | ||||
|         os.makedirs(directory) | ||||
|     soup = BeautifulSoup(html, features='lxml') | ||||
|     contents = re.findall('<li>\d.*?</li>', html, re.S) | ||||
|     if random_on==1: | ||||
|         random.shuffle(contents) | ||||
|     if reverse==1: | ||||
|         contents.reverse() | ||||
|     for content in contents: | ||||
|         soup2 = BeautifulSoup(content, features='lxml') | ||||
|         all_li = soup2.find_all('li') | ||||
|         for li in all_li: | ||||
|             if re.search('\d*. ', li.get_text()): | ||||
|                 word = re.findall('\s[a-zA-Z].*?\s', li.get_text(), re.S)[0][1:-1] | ||||
|                 exist = os.path.exists(directory+word+'.mp3') | ||||
|                 if not exist: | ||||
|                     try: | ||||
|                         if re.search(word, html_file): | ||||
|                             r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True) | ||||
|                             with open(directory+word+'.mp3', 'wb') as f: | ||||
|                                 for chunk in r.iter_content(chunk_size=32): | ||||
|                                     f.write(chunk) | ||||
|                     except: | ||||
|                         pass | ||||
|                 print(li.get_text()) | ||||
|                 try: | ||||
|                     pygame.mixer.init() | ||||
|                     track = pygame.mixer.music.load(directory+word+'.mp3') | ||||
|                     pygame.mixer.music.play() | ||||
|                     if show_link==1: | ||||
|                         print('https://www.ldoceonline.com/dictionary/'+word) | ||||
|                 except: | ||||
|                     pass | ||||
|                 time.sleep(rest_time) | ||||
|                 pygame.mixer.music.stop() | ||||
|                 print() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 播放元素周期表上的单词 | ||||
| def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
|     import urllib.request | ||||
|     import requests | ||||
|     import os | ||||
|     import pygame | ||||
|     import time | ||||
|     import ssl | ||||
|     import random | ||||
|     ssl._create_default_https_context = ssl._create_unverified_context | ||||
|     html = urllib.request.urlopen("https://www.guanjihuan.com/archives/10897").read().decode('utf-8') | ||||
|     directory = 'prons/' | ||||
|     exist_directory = os.path.exists(directory) | ||||
|     html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/periodic_table_of_elements/"+directory).read().decode('utf-8') | ||||
|     if exist_directory == 0: | ||||
|         os.makedirs(directory) | ||||
|     soup = BeautifulSoup(html, features='lxml') | ||||
|     contents = re.findall('<h2.*?</a></p>', html, re.S) | ||||
|     if random_on==1: | ||||
|         random.shuffle(contents) | ||||
|     for content in contents: | ||||
|         soup2 = BeautifulSoup(content, features='lxml') | ||||
|         all_h2 = soup2.find_all('h2') | ||||
|         for h2 in all_h2: | ||||
|             if re.search('\d*. ', h2.get_text()): | ||||
|                 word = re.findall('[a-zA-Z].* \(', h2.get_text(), re.S)[0][:-2] | ||||
|                 exist = os.path.exists(directory+word+'.mp3') | ||||
|                 if not exist: | ||||
|                     try: | ||||
|                         if re.search(word, html_file): | ||||
|                             r = requests.get("https://file.guanjihuan.com/words/periodic_table_of_elements/prons/"+word+".mp3", stream=True) | ||||
|                             with open(directory+word+'.mp3', 'wb') as f: | ||||
|                                 for chunk in r.iter_content(chunk_size=32): | ||||
|                                     f.write(chunk) | ||||
|                     except: | ||||
|                         pass | ||||
|                 print(h2.get_text()) | ||||
|                 try: | ||||
|                     pygame.mixer.init() | ||||
|                     track = pygame.mixer.music.load(directory+word+'.mp3') | ||||
|                     pygame.mixer.music.play() | ||||
|                     if show_link==1: | ||||
|                         print('https://www.merriam-webster.com/dictionary/'+word) | ||||
|                 except: | ||||
|                     pass | ||||
|                 translation = re.findall('<p>.*?</p>', content, re.S)[0][3:-4] | ||||
|                 if show_translation==1: | ||||
|                     time.sleep(translation_time) | ||||
|                     print(translation) | ||||
|                 time.sleep(rest_time) | ||||
|                 pygame.mixer.music.stop() | ||||
|                 print() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 获取Guan软件包当前模块的所有函数名 | ||||
| def get_all_function_names_in_current_module(): | ||||
|     import inspect | ||||
|     current_module = inspect.getmodule(inspect.currentframe()) | ||||
|     function_names = [name for name, obj in inspect.getmembers(current_module) if inspect.isfunction(obj)] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return function_names | ||||
|  | ||||
| # 统计Guan软件包中的函数数量 | ||||
| def count_functions_in_current_module(): | ||||
|     import guan | ||||
|     function_names = guan.get_all_function_names_in_current_module() | ||||
|     num_functions = len(function_names) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return num_functions | ||||
|  | ||||
| # 获取当前函数名 | ||||
| def get_current_function_name(): | ||||
|     import inspect | ||||
|     current_function_name = inspect.currentframe().f_code.co_name | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return current_function_name | ||||
|  | ||||
| # 获取调用本函数的函数名 | ||||
| def get_calling_function_name(layer=1): | ||||
|     import inspect | ||||
|     caller = inspect.stack()[layer] | ||||
|     calling_function_name = caller.function | ||||
|     return calling_function_name | ||||
|  | ||||
| # 获取当前日期字符串 | ||||
| def get_date(bar=True): | ||||
|     import datetime | ||||
|     datetime_date = str(datetime.date.today()) | ||||
|     if bar==False: | ||||
|         datetime_date = datetime_date.replace('-', '') | ||||
|     return datetime_date | ||||
|  | ||||
| # 获取当前时间字符串 | ||||
| def get_time(): | ||||
|     import datetime | ||||
|     datetime_time = datetime.datetime.now().strftime('%H:%M:%S') | ||||
|     return datetime_time | ||||
|  | ||||
| # 获取MAC地址 | ||||
| def get_mac_address(): | ||||
|     import uuid | ||||
|     mac_address = uuid.UUID(int=uuid.getnode()).hex[-12:].upper() | ||||
|     mac_address = '-'.join([mac_address[i:i+2] for i in range(0, 11, 2)]) | ||||
|     return mac_address | ||||
|  | ||||
| # Guan软件包的使用统计(不涉及到用户的个人数据) | ||||
| def statistics_of_guan_package(): | ||||
|     try: | ||||
|         import guan | ||||
|         message_calling = guan.get_calling_function_name(layer=3) | ||||
|         if message_calling == '<module>': | ||||
|             import socket | ||||
|             datetime_date = guan.get_date() | ||||
|             datetime_time = guan.get_time() | ||||
|             current_version = guan.get_current_version('guan') | ||||
|             client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | ||||
|             client_socket.settimeout(0.5) | ||||
|             client_socket.connect(('py.guanjihuan.com', 12345)) | ||||
|             mac_address = guan.get_mac_address() | ||||
|             message = guan.get_calling_function_name(layer=2) | ||||
|             send_message = datetime_date + ' ' + datetime_time + ' version_'+current_version + ' MAC_address: '+mac_address+' guan.' + message+'\n' | ||||
|             client_socket.send(send_message.encode()) | ||||
|             client_socket.close() | ||||
|     except: | ||||
|         pass | ||||
|  | ||||
| # 获取Python软件包的最新版本 | ||||
| def get_latest_version(package_name='guan', timeout=0.5): | ||||
|     import requests | ||||
|     url = f"https://pypi.org/pypi/{package_name}/json" | ||||
|     try: | ||||
|         response = requests.get(url, timeout=timeout) | ||||
|     except: | ||||
|         return None | ||||
|     if response.status_code == 200: | ||||
|         data = response.json() | ||||
|         latest_version = data["info"]["version"] | ||||
|         return latest_version | ||||
|     else: | ||||
|         return None | ||||
|  | ||||
| # 获取软件包的本机版本 | ||||
| def get_current_version(package_name='guan'): | ||||
|     import importlib.metadata | ||||
|     try: | ||||
|         current_version = importlib.metadata.version(package_name) | ||||
|         return current_version | ||||
|     except: | ||||
|         return None | ||||
|  | ||||
| # Guan软件包升级提示 | ||||
| def notification_of_upgrade(timeout=0.5): | ||||
|     try: | ||||
|         import guan | ||||
|         latest_version = guan.get_latest_version(package_name='guan', timeout=timeout) | ||||
|         current_version = guan.get_current_version('guan') | ||||
|         if latest_version != None and current_version != None: | ||||
|             if latest_version != current_version: | ||||
|                 print('提示:您当前使用的版本是 guan-'+current_version+',目前已经有最新版本 guan-'+latest_version+'。您可以通过以下命令对软件包进行升级:pip install --upgrade guan') | ||||
|     except: | ||||
|         pass | ||||
							
								
								
									
										164
									
								
								PyPI/src/guan/density_of_states.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										164
									
								
								PyPI/src/guan/density_of_states.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,164 @@ | ||||
| # Module: density_of_states | ||||
|  | ||||
| # 计算体系的总态密度 | ||||
| def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import guan | ||||
|     green = guan.green_function(fermi_energy, hamiltonian, broadening) | ||||
|     total_dos = -np.trace(np.imag(green))/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return total_dos | ||||
|  | ||||
| # 对于不同费米能,计算体系的总态密度 | ||||
| def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     dim = np.array(fermi_energy_array).shape[0] | ||||
|     total_dos_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for fermi_energy in fermi_energy_array: | ||||
|         if print_show == 1: | ||||
|             print(fermi_energy) | ||||
|         total_dos_array[i0] = guan.total_density_of_states(fermi_energy, hamiltonian, broadening) | ||||
|         i0 += 1 | ||||
|     guan.statistics_of_guan_package() | ||||
|     return total_dos_array | ||||
|  | ||||
| # 计算方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*internal_degree) | ||||
| def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import guan | ||||
|     green = guan.green_function(fermi_energy, hamiltonian, broadening) | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree):  | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|  | ||||
| # 计算立方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*N3*internal_degree) | ||||
| def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import guan | ||||
|     green = guan.green_function(fermi_energy, hamiltonian, broadening) | ||||
|     local_dos = np.zeros((N3, N2, N1)) | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree):  | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree) | ||||
| def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import guan | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     green_11_1 = guan.green_function(fermi_energy, h00, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i2_0 in range(i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree): | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算立方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*N3*internal_degree) | ||||
| def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import guan | ||||
|     local_dos = np.zeros((N3, N2, N1)) | ||||
|     green_11_1 = guan.green_function(fermi_energy, h00, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i1_0 in range(i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree): | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi        | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算方格子条带(考虑了电极自能)的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree) | ||||
| def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import guan | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i2_0 in range(i1): | ||||
|             if i2_0 == N1-1-1: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening) | ||||
|             else: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             if size_0 == N1-1-i1-1: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening) | ||||
|             else: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree): | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
							
								
								
									
										501
									
								
								PyPI/src/guan/file_processing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										501
									
								
								PyPI/src/guan/file_processing.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,501 @@ | ||||
| # Module: file_processing | ||||
|  | ||||
| # 自动先后运行程序(串行) | ||||
| def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0): | ||||
|     import os | ||||
|     import time | ||||
|     if show_time == 1: | ||||
|         start = time.time() | ||||
|     i0 = 0 | ||||
|     for program_file in program_files: | ||||
|         i0 += 1 | ||||
|         if show_time == 1: | ||||
|             start_0 = time.time() | ||||
|         os.system(execute+program_file) | ||||
|         if show_time == 1: | ||||
|             end_0 = time.time() | ||||
|             print('Running time of program_'+str(i0)+' = '+str((end_0-start_0)/60)+' min') | ||||
|     if show_time == 1: | ||||
|         end = time.time() | ||||
|         print('Total running time = '+str((end-start)/60)+' min') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 如果不存在文件夹,则新建文件夹 | ||||
| def make_directory(directory='./test'): | ||||
|     import os | ||||
|     if not os.path.exists(directory): | ||||
|         os.makedirs(directory) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 复制一份文件 | ||||
| def copy_file(file1='./a.txt', file2='./b.txt'): | ||||
|     import shutil | ||||
|     shutil.copy(file1, file2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 拼接两个PDF文件 | ||||
| def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'): | ||||
|     import PyPDF2 | ||||
|     output_pdf = PyPDF2.PdfWriter() | ||||
|     with open(input_file_1, 'rb') as file1: | ||||
|         pdf1 = PyPDF2.PdfReader(file1) | ||||
|         for page in range(len(pdf1.pages)): | ||||
|             output_pdf.add_page(pdf1.pages[page]) | ||||
|     with open(input_file_2, 'rb') as file2: | ||||
|         pdf2 = PyPDF2.PdfReader(file2) | ||||
|         for page in range(len(pdf2.pages)): | ||||
|             output_pdf.add_page(pdf2.pages[page]) | ||||
|     with open(output_file, 'wb') as combined_file: | ||||
|         output_pdf.write(combined_file) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将PDF文件转成文本 | ||||
| def pdf_to_text(pdf_path): | ||||
|     from pdfminer.pdfparser import PDFParser, PDFDocument | ||||
|     from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter | ||||
|     from pdfminer.converter import PDFPageAggregator | ||||
|     from pdfminer.layout import LAParams, LTTextBox | ||||
|     from pdfminer.pdfinterp import PDFTextExtractionNotAllowed | ||||
|     import logging  | ||||
|     logging.Logger.propagate = False  | ||||
|     logging.getLogger().setLevel(logging.ERROR)  | ||||
|     praser = PDFParser(open(pdf_path, 'rb')) | ||||
|     doc = PDFDocument() | ||||
|     praser.set_document(doc) | ||||
|     doc.set_parser(praser) | ||||
|     doc.initialize() | ||||
|     if not doc.is_extractable: | ||||
|         raise PDFTextExtractionNotAllowed | ||||
|     else: | ||||
|         rsrcmgr = PDFResourceManager() | ||||
|         laparams = LAParams() | ||||
|         device = PDFPageAggregator(rsrcmgr, laparams=laparams) | ||||
|         interpreter = PDFPageInterpreter(rsrcmgr, device) | ||||
|         content = '' | ||||
|         for page in doc.get_pages(): | ||||
|             interpreter.process_page(page)                         | ||||
|             layout = device.get_result()                      | ||||
|             for x in layout: | ||||
|                 if isinstance(x, LTTextBox): | ||||
|                     content  = content + x.get_text().strip() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return content | ||||
|  | ||||
| # 获取PDF文件页数 | ||||
| def get_pdf_page_number(pdf_path): | ||||
|     import PyPDF2 | ||||
|     pdf_file = open(pdf_path, 'rb') | ||||
|     pdf_reader = PyPDF2.PdfReader(pdf_file) | ||||
|     num_pages = len(pdf_reader.pages) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return num_pages | ||||
|  | ||||
| # 获取PDF文件指定页面的内容 | ||||
| def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1): | ||||
|     import PyPDF2 | ||||
|     pdf_file = open(pdf_path, 'rb') | ||||
|     pdf_reader = PyPDF2.PdfReader(pdf_file) | ||||
|     num_pages = len(pdf_reader.pages) | ||||
|     for page_num0 in range(num_pages): | ||||
|         if page_num0 == page_num-1: | ||||
|             page = pdf_reader.pages[page_num0] | ||||
|             page_text = page.extract_text() | ||||
|     pdf_file.close() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return page_text | ||||
|  | ||||
| # 获取PDF文献中的链接。例如: link_starting_form='https://doi.org' | ||||
| def get_links_from_pdf(pdf_path, link_starting_form=''): | ||||
|     import PyPDF2 | ||||
|     import re | ||||
|     pdfReader = PyPDF2.PdfFileReader(pdf_path) | ||||
|     pages = pdfReader.getNumPages() | ||||
|     i0 = 0 | ||||
|     links = [] | ||||
|     for page in range(pages): | ||||
|         pageSliced = pdfReader.getPage(page) | ||||
|         pageObject = pageSliced.getObject() | ||||
|         if '/Annots' in pageObject.keys(): | ||||
|             ann = pageObject['/Annots'] | ||||
|             old = '' | ||||
|             for a in ann: | ||||
|                 u = a.getObject() | ||||
|                 if '/A' in u.keys(): | ||||
|                     if re.search(re.compile('^'+link_starting_form), u['/A']['/URI']): | ||||
|                         if u['/A']['/URI'] != old: | ||||
|                             links.append(u['/A']['/URI'])  | ||||
|                             i0 += 1 | ||||
|                             old = u['/A']['/URI']         | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return links | ||||
|  | ||||
| # 通过Sci-Hub网站下载文献 | ||||
| def download_with_scihub(address=None, num=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
|     import requests | ||||
|     import os | ||||
|     if num==1 and address!=None: | ||||
|         address_array = [address] | ||||
|     else: | ||||
|         address_array = [] | ||||
|         for i in range(num): | ||||
|             address = input('\nInput:') | ||||
|             address_array.append(address) | ||||
|     for address in address_array: | ||||
|         r = requests.post('https://sci-hub.st/', data={'request': address}) | ||||
|         print('\nResponse:', r) | ||||
|         print('Address:', r.url) | ||||
|         soup = BeautifulSoup(r.text, features='lxml') | ||||
|         pdf_URL = soup.embed['src'] | ||||
|         # pdf_URL = soup.iframe['src'] # This is a code line of history version which fails to get pdf URL. | ||||
|         if re.search(re.compile('^https:'), pdf_URL): | ||||
|             pass | ||||
|         else: | ||||
|             pdf_URL = 'https:'+pdf_URL | ||||
|         print('PDF address:', pdf_URL) | ||||
|         name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::] | ||||
|         print('PDF name:', name) | ||||
|         print('Directory:', os.getcwd()) | ||||
|         print('\nDownloading...') | ||||
|         r = requests.get(pdf_URL, stream=True) | ||||
|         with open(name, 'wb') as f: | ||||
|             for chunk in r.iter_content(chunk_size=32): | ||||
|                 f.write(chunk) | ||||
|         print('Completed!\n') | ||||
|     if num != 1: | ||||
|         print('All completed!\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将文件目录结构写入Markdown文件 | ||||
| def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None):  | ||||
|     import os | ||||
|     f = open(filename+'.md', 'w', encoding="utf-8") | ||||
|     filenames1 = os.listdir(directory) | ||||
|     u0 = 0 | ||||
|     for filename1 in filenames1[::reverse_positive_or_negative]: | ||||
|         filename1_with_path = os.path.join(directory,filename1)  | ||||
|         if os.path.isfile(filename1_with_path): | ||||
|             if os.path.splitext(filename1)[1] not in banned_file_format: | ||||
|                 if hide_file_format == None: | ||||
|                     f.write('+ '+str(filename1)+'\n\n') | ||||
|                 else: | ||||
|                     f.write('+ '+str(os.path.splitext(filename1)[0])+'\n\n') | ||||
|         else: | ||||
|             u0 += 1 | ||||
|             if divided_line != None and u0 != 1: | ||||
|                 f.write('--------\n\n') | ||||
|             if starting_from_h1 == None: | ||||
|                 f.write('#') | ||||
|             f.write('# '+str(filename1)+'\n\n') | ||||
|  | ||||
|             filenames2 = os.listdir(filename1_with_path)  | ||||
|             i0 = 0      | ||||
|             for filename2 in filenames2[::reverse_positive_or_negative]: | ||||
|                 filename2_with_path = os.path.join(directory, filename1, filename2)  | ||||
|                 if os.path.isfile(filename2_with_path): | ||||
|                     if os.path.splitext(filename2)[1] not in banned_file_format: | ||||
|                         if hide_file_format == None: | ||||
|                             f.write('+ '+str(filename2)+'\n\n') | ||||
|                         else: | ||||
|                             f.write('+ '+str(os.path.splitext(filename2)[0])+'\n\n') | ||||
|                 else:  | ||||
|                     i0 += 1 | ||||
|                     if starting_from_h1 == None: | ||||
|                         f.write('#') | ||||
|                     if show_second_number != None: | ||||
|                         f.write('## '+str(i0)+'. '+str(filename2)+'\n\n') | ||||
|                     else: | ||||
|                         f.write('## '+str(filename2)+'\n\n') | ||||
|                      | ||||
|                     j0 = 0 | ||||
|                     filenames3 = os.listdir(filename2_with_path) | ||||
|                     for filename3 in filenames3[::reverse_positive_or_negative]: | ||||
|                         filename3_with_path = os.path.join(directory, filename1, filename2, filename3)  | ||||
|                         if os.path.isfile(filename3_with_path):  | ||||
|                             if os.path.splitext(filename3)[1] not in banned_file_format: | ||||
|                                 if hide_file_format == None: | ||||
|                                     f.write('+ '+str(filename3)+'\n\n') | ||||
|                                 else: | ||||
|                                     f.write('+ '+str(os.path.splitext(filename3)[0])+'\n\n') | ||||
|                         else: | ||||
|                             j0 += 1 | ||||
|                             if starting_from_h1 == None: | ||||
|                                 f.write('#') | ||||
|                             if show_third_number != None: | ||||
|                                 f.write('### ('+str(j0)+') '+str(filename3)+'\n\n') | ||||
|                             else: | ||||
|                                 f.write('### '+str(filename3)+'\n\n') | ||||
|  | ||||
|                             filenames4 = os.listdir(filename3_with_path) | ||||
|                             for filename4 in filenames4[::reverse_positive_or_negative]: | ||||
|                                 filename4_with_path = os.path.join(directory, filename1, filename2, filename3, filename4)  | ||||
|                                 if os.path.isfile(filename4_with_path): | ||||
|                                     if os.path.splitext(filename4)[1] not in banned_file_format: | ||||
|                                         if hide_file_format == None: | ||||
|                                             f.write('+ '+str(filename4)+'\n\n') | ||||
|                                         else: | ||||
|                                             f.write('+ '+str(os.path.splitext(filename4)[0])+'\n\n') | ||||
|                                 else:  | ||||
|                                     if starting_from_h1 == None: | ||||
|                                         f.write('#') | ||||
|                                     f.write('#### '+str(filename4)+'\n\n') | ||||
|  | ||||
|                                     filenames5 = os.listdir(filename4_with_path) | ||||
|                                     for filename5 in filenames5[::reverse_positive_or_negative]: | ||||
|                                         filename5_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5)  | ||||
|                                         if os.path.isfile(filename5_with_path):  | ||||
|                                             if os.path.splitext(filename5)[1] not in banned_file_format: | ||||
|                                                 if hide_file_format == None: | ||||
|                                                     f.write('+ '+str(filename5)+'\n\n') | ||||
|                                                 else: | ||||
|                                                     f.write('+ '+str(os.path.splitext(filename5)[0])+'\n\n') | ||||
|                                         else: | ||||
|                                             if starting_from_h1 == None: | ||||
|                                                 f.write('#') | ||||
|                                             f.write('##### '+str(filename5)+'\n\n') | ||||
|  | ||||
|                                             filenames6 = os.listdir(filename5_with_path) | ||||
|                                             for filename6 in filenames6[::reverse_positive_or_negative]: | ||||
|                                                 filename6_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5, filename6)  | ||||
|                                                 if os.path.isfile(filename6_with_path):  | ||||
|                                                     if os.path.splitext(filename6)[1] not in banned_file_format: | ||||
|                                                         if hide_file_format == None: | ||||
|                                                             f.write('+ '+str(filename6)+'\n\n') | ||||
|                                                         else: | ||||
|                                                             f.write('+ '+str(os.path.splitext(filename6)[0])+'\n\n') | ||||
|                                                 else: | ||||
|                                                     if starting_from_h1 == None: | ||||
|                                                         f.write('#') | ||||
|                                                     f.write('###### '+str(filename6)+'\n\n') | ||||
|     f.close() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 查找文件名相同的文件 | ||||
| def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000): | ||||
|     import os | ||||
|     from collections import Counter | ||||
|     file_list = [] | ||||
|     for root, dirs, files in os.walk(directory): | ||||
|         for i0 in range(len(files)): | ||||
|             file_list.append(files[i0]) | ||||
|             for word in ignored_directory_with_words: | ||||
|                 if word in root: | ||||
|                     file_list.remove(files[i0])        | ||||
|             for word in ignored_file_with_words: | ||||
|                 if word in files[i0]: | ||||
|                     try: | ||||
|                         file_list.remove(files[i0])    | ||||
|                     except: | ||||
|                         pass  | ||||
|     count_file = Counter(file_list).most_common(num) | ||||
|     repeated_file = [] | ||||
|     for item in count_file: | ||||
|         if item[1]>1: | ||||
|             repeated_file.append(item) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return repeated_file | ||||
|  | ||||
| # 统计各个子文件夹中的文件数量 | ||||
| def count_file_in_sub_directory(directory='./', smaller_than_num=None): | ||||
|     import os | ||||
|     from collections import Counter | ||||
|     dirs_list = [] | ||||
|     for root, dirs, files in os.walk(directory): | ||||
|         if dirs != []: | ||||
|             for i0 in range(len(dirs)): | ||||
|                 dirs_list.append(root+'/'+dirs[i0]) | ||||
|     for sub_dir in dirs_list: | ||||
|         file_list = [] | ||||
|         for root, dirs, files in os.walk(sub_dir): | ||||
|             for i0 in range(len(files)): | ||||
|                 file_list.append(files[i0]) | ||||
|         count_file = len(file_list) | ||||
|         if smaller_than_num == None: | ||||
|             print(sub_dir) | ||||
|             print(count_file) | ||||
|             print() | ||||
|         else: | ||||
|             if count_file<smaller_than_num: | ||||
|                 print(sub_dir) | ||||
|                 print(count_file) | ||||
|                 print() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 产生必要的文件,例如readme.md | ||||
| def creat_necessary_file(directory, filename='readme', file_format='.md', content='', overwrite=None, ignored_directory_with_words=[]): | ||||
|     import os | ||||
|     directory_with_file = [] | ||||
|     ignored_directory = [] | ||||
|     for root, dirs, files in os.walk(directory): | ||||
|         for i0 in range(len(files)): | ||||
|             if root not in directory_with_file: | ||||
|                 directory_with_file.append(root) | ||||
|             if files[i0] == filename+file_format: | ||||
|                 if root not in ignored_directory: | ||||
|                     ignored_directory.append(root) | ||||
|     if overwrite == None: | ||||
|         for root in ignored_directory: | ||||
|             directory_with_file.remove(root) | ||||
|     ignored_directory_more =[] | ||||
|     for root in directory_with_file:  | ||||
|         for word in ignored_directory_with_words: | ||||
|             if word in root: | ||||
|                 if root not in ignored_directory_more: | ||||
|                     ignored_directory_more.append(root) | ||||
|     for root in ignored_directory_more: | ||||
|         directory_with_file.remove(root)  | ||||
|     for root in directory_with_file: | ||||
|         os.chdir(root) | ||||
|         f = open(filename+file_format, 'w', encoding="utf-8") | ||||
|         f.write(content) | ||||
|         f.close() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 删除特定文件名的文件 | ||||
| def delete_file_with_specific_name(directory, filename='readme', file_format='.md'): | ||||
|     import os | ||||
|     for root, dirs, files in os.walk(directory): | ||||
|         for i0 in range(len(files)): | ||||
|             if files[i0] == filename+file_format: | ||||
|                 os.remove(root+'/'+files[i0]) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 所有文件移到根目录(慎用) | ||||
| def move_all_files_to_root_directory(directory): | ||||
|     import os | ||||
|     import shutil | ||||
|     for root, dirs, files in os.walk(directory): | ||||
|         for i0 in range(len(files)): | ||||
|             shutil.move(root+'/'+files[i0], directory+'/'+files[i0]) | ||||
|     for i0 in range(100): | ||||
|         for root, dirs, files in os.walk(directory): | ||||
|             try: | ||||
|                 os.rmdir(root)  | ||||
|             except: | ||||
|                 pass | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 改变当前的目录位置 | ||||
| def change_directory_by_replacement(current_key_word='code', new_key_word='data'): | ||||
|     import os | ||||
|     code_path = os.getcwd() | ||||
|     data_path = code_path.replace('\\', '/')  | ||||
|     data_path = data_path.replace(current_key_word, new_key_word)  | ||||
|     if os.path.exists(data_path) == False: | ||||
|         os.makedirs(data_path) | ||||
|     os.chdir(data_path) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 生成二维码 | ||||
| def creat_qrcode(data="https://www.guanjihuan.com", filename='a', file_format='.png'): | ||||
|     import qrcode | ||||
|     img = qrcode.make(data) | ||||
|     img.save(filename+file_format) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将文本转成音频 | ||||
| def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
|     if print_text==1: | ||||
|         print(str) | ||||
|     engine = pyttsx3.init() | ||||
|     voices = engine.getProperty('voices')   | ||||
|     engine.setProperty('voice', voices[voice].id) | ||||
|     engine.setProperty("rate", rate) | ||||
|     if save==1: | ||||
|         engine.save_to_file(str, filename+'.wav') | ||||
|         engine.runAndWait() | ||||
|         print('Wav file saved!') | ||||
|         if compress==1: | ||||
|             import os | ||||
|             os.rename(filename+'.wav', 'temp.wav') | ||||
|             guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate) | ||||
|             os.remove('temp.wav') | ||||
|     if read==1: | ||||
|         engine.say(str) | ||||
|         engine.runAndWait() | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将txt文件转成音频 | ||||
| def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
|     f = open(txt_path, 'r', encoding ='utf-8') | ||||
|     text = f.read() | ||||
|     if print_text==1: | ||||
|         print(text) | ||||
|     engine = pyttsx3.init() | ||||
|     voices = engine.getProperty('voices')   | ||||
|     engine.setProperty('voice', voices[voice].id) | ||||
|     engine.setProperty("rate", rate) | ||||
|     if save==1: | ||||
|         import re | ||||
|         filename = re.split('[/,\\\]', txt_path)[-1][:-4] | ||||
|         engine.save_to_file(text, filename+'.wav') | ||||
|         engine.runAndWait() | ||||
|         print('Wav file saved!') | ||||
|         if compress==1: | ||||
|             import os | ||||
|             os.rename(filename+'.wav', 'temp.wav') | ||||
|             guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate) | ||||
|             os.remove('temp.wav') | ||||
|     if read==1: | ||||
|         engine.say(text) | ||||
|         engine.runAndWait() | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将PDF文件转成音频 | ||||
| def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
|     text = guan.pdf_to_text(pdf_path) | ||||
|     text = text.replace('\n', ' ') | ||||
|     if print_text==1: | ||||
|         print(text) | ||||
|     engine = pyttsx3.init() | ||||
|     voices = engine.getProperty('voices')   | ||||
|     engine.setProperty('voice', voices[voice].id) | ||||
|     engine.setProperty("rate", rate) | ||||
|     if save==1: | ||||
|         import re | ||||
|         filename = re.split('[/,\\\]', pdf_path)[-1][:-4] | ||||
|         engine.save_to_file(text, filename+'.wav') | ||||
|         engine.runAndWait() | ||||
|         print('Wav file saved!') | ||||
|         if compress==1: | ||||
|             import os | ||||
|             os.rename(filename+'.wav', 'temp.wav') | ||||
|             guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate) | ||||
|             os.remove('temp.wav') | ||||
|     if read==1: | ||||
|         engine.say(text) | ||||
|         engine.runAndWait() | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将wav音频文件压缩成MP3音频文件 | ||||
| def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'): | ||||
|     # Note: Beside the installation of pydub, you may also need download FFmpeg on http://www.ffmpeg.org/download.html and add the bin path to the environment variable. | ||||
|     from pydub import AudioSegment | ||||
|     sound = AudioSegment.from_mp3(wav_path) | ||||
|     sound.export(output_filename,format="mp3",bitrate=bitrate) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
							
								
								
									
										413
									
								
								PyPI/src/guan/plot_figures.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										413
									
								
								PyPI/src/guan/plot_figures.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,413 @@ | ||||
| # Module: plot_figures | ||||
|  | ||||
| # 导入plt, fig, ax | ||||
| def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
|     plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left) | ||||
|     ax.grid() | ||||
|     ax.tick_params(labelsize=labelsize)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return plt, fig, ax | ||||
|  | ||||
| # 基于plt, fig, ax开始画图 | ||||
| def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):  | ||||
|     if color==None: | ||||
|         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) | ||||
|     else: | ||||
|         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize, color=color) | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y_min=min(y_array) | ||||
|         if y_max==None: | ||||
|             y_max=max(y_array) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画图 | ||||
| def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) | ||||
|     ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y_min=min(y_array) | ||||
|         if y_max==None: | ||||
|             y_max=max(y_array) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 一组横坐标数据,两组纵坐标数据画图 | ||||
| def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
|     ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||
|     ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y1_min=min(y1_array) | ||||
|             y2_min=min(y2_array) | ||||
|             y_min=min([y1_min, y2_min]) | ||||
|         if y_max==None: | ||||
|             y1_max=max(y1_array) | ||||
|             y2_max=max(y2_array) | ||||
|             y_max=max([y1_max, y2_max]) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 两组横坐标数据,两组纵坐标数据画图 | ||||
| def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
|     ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||
|     ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y1_min=min(y1_array) | ||||
|             y2_min=min(y2_array) | ||||
|             y_min=min([y1_min, y2_min]) | ||||
|         if y_max==None: | ||||
|             y1_max=max(y1_array) | ||||
|             y2_max=max(y2_array) | ||||
|             y_max=max([y1_max, y2_max]) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 一组横坐标数据,三组纵坐标数据画图 | ||||
| def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
|     ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||
|     ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||
|     ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y1_min=min(y1_array) | ||||
|             y2_min=min(y2_array) | ||||
|             y3_min=min(y3_array) | ||||
|             y_min=min([y1_min, y2_min, y3_min]) | ||||
|         if y_max==None: | ||||
|             y1_max=max(y1_array) | ||||
|             y2_max=max(y2_array) | ||||
|             y3_max=max(y3_array) | ||||
|             y_max=max([y1_max, y2_max, y3_max]) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 三组横坐标数据,三组纵坐标数据画图 | ||||
| def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
|     ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||
|     ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||
|     ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y1_min=min(y1_array) | ||||
|             y2_min=min(y2_array) | ||||
|             y3_min=min(y3_array) | ||||
|             y_min=min([y1_min, y2_min, y3_min]) | ||||
|         if y_max==None: | ||||
|             y1_max=max(y1_array) | ||||
|             y2_max=max(y2_array) | ||||
|             y3_max=max(y3_array) | ||||
|             y_max=max([y1_max, y2_max, y3_max]) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画三维图 | ||||
| def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):  | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
|     from matplotlib import cm | ||||
|     from matplotlib.ticker import LinearLocator | ||||
|     matrix = np.array(matrix) | ||||
|     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) | ||||
|     plt.subplots_adjust(bottom=0.1, right=0.65)  | ||||
|     x_array, y_array = np.meshgrid(x_array, y_array) | ||||
|     if len(matrix.shape) == 2: | ||||
|         surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||
|     elif len(matrix.shape) == 3: | ||||
|         for i0 in range(matrix.shape[2]): | ||||
|             surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.zaxis.set_major_locator(LinearLocator(5))  | ||||
|     ax.zaxis.set_major_formatter('{x:.2f}')   | ||||
|     if z_min!=None or z_max!=None: | ||||
|         if z_min==None: | ||||
|             z_min=matrix.min() | ||||
|         if z_max==None: | ||||
|             z_max=matrix.max() | ||||
|         ax.set_zlim(z_min, z_max) | ||||
|     ax.tick_params(labelsize=labelsize)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels]  | ||||
|     cax = plt.axes([0.8, 0.1, 0.05, 0.8])  | ||||
|     cbar = fig.colorbar(surf, cax=cax)   | ||||
|     cbar.ax.tick_params(labelsize=labelsize) | ||||
|     for l in cbar.ax.yaxis.get_ticklabels(): | ||||
|         l.set_family('Times New Roman') | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画Contour图 | ||||
| def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
|     plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)  | ||||
|     x_array, y_array = np.meshgrid(x_array, y_array) | ||||
|     contour = ax.contourf(x_array,y_array,matrix,cmap=cmap, levels=levels)  | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.tick_params(labelsize=labelsize)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels] | ||||
|     cax = plt.axes([0.8, 0.2, 0.05, 0.68]) | ||||
|     cbar = fig.colorbar(contour, cax=cax)  | ||||
|     cbar.ax.tick_params(labelsize=labelsize)  | ||||
|     for l in cbar.ax.yaxis.get_ticklabels(): | ||||
|         l.set_family('Times New Roman') | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画棋盘图/伪彩色图 | ||||
| def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):   | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
|     plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)  | ||||
|     x_array, y_array = np.meshgrid(x_array, y_array) | ||||
|     contour = ax.pcolor(x_array,y_array,matrix, cmap=cmap) | ||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||
|     ax.tick_params(labelsize=labelsize)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels] | ||||
|     cax = plt.axes([0.8, 0.2, 0.05, 0.68]) | ||||
|     cbar = fig.colorbar(contour, cax=cax)  | ||||
|     cbar.ax.tick_params(labelsize=labelsize)  | ||||
|     for l in cbar.ax.yaxis.get_ticklabels(): | ||||
|         l.set_family('Times New Roman') | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+file_format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 通过坐标画点和线 | ||||
| def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300): | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
|     coordinate_array = np.array(coordinate_array) | ||||
|     print(coordinate_array.shape) | ||||
|     x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0]) | ||||
|     y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1]) | ||||
|     fig, ax = plt.subplots(figsize=(6*x_range/y_range,6)) | ||||
|     plt.subplots_adjust(left=0, bottom=0, right=1, top=1) | ||||
|     plt.axis('off') | ||||
|     if draw_lines==1: | ||||
|         for i1 in range(coordinate_array.shape[0]): | ||||
|             for i2 in range(coordinate_array.shape[0]): | ||||
|                 if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance: | ||||
|                     ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth) | ||||
|     if draw_dots==1: | ||||
|         for i in range(coordinate_array.shape[0]): | ||||
|             ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize) | ||||
|     if show==1: | ||||
|         plt.show() | ||||
|     if save==1: | ||||
|         if file_format=='.eps': | ||||
|             plt.savefig(filename+file_format) | ||||
|         else: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 合并两个图片 | ||||
| def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
|     if num != 2: | ||||
|         print('Error: The number of images should be two!') | ||||
|     else: | ||||
|         import matplotlib.pyplot as plt | ||||
|         import matplotlib.image as mpimg | ||||
|         fig = plt.figure(figsize=figsize) | ||||
|         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  | ||||
|         ax1 = fig.add_subplot(121) | ||||
|         ax2 = fig.add_subplot(122) | ||||
|         image_1 = mpimg.imread(image_path_array[0]) | ||||
|         image_2 = mpimg.imread(image_path_array[1]) | ||||
|         ax1.imshow(image_1) | ||||
|         ax2.imshow(image_2) | ||||
|         ax1.axis('off') | ||||
|         ax2.axis('off') | ||||
|         if show == 1: | ||||
|             plt.show() | ||||
|         if save == 1: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|         plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 合并三个图片 | ||||
| def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
|     if num != 3: | ||||
|         print('Error: The number of images should be three!') | ||||
|     else: | ||||
|         import matplotlib.pyplot as plt | ||||
|         import matplotlib.image as mpimg | ||||
|         fig = plt.figure(figsize=figsize) | ||||
|         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  | ||||
|         ax1 = fig.add_subplot(131) | ||||
|         ax2 = fig.add_subplot(132) | ||||
|         ax3 = fig.add_subplot(133) | ||||
|         image_1 = mpimg.imread(image_path_array[0]) | ||||
|         image_2 = mpimg.imread(image_path_array[1]) | ||||
|         image_3 = mpimg.imread(image_path_array[2]) | ||||
|         ax1.imshow(image_1) | ||||
|         ax2.imshow(image_2) | ||||
|         ax3.imshow(image_3) | ||||
|         ax1.axis('off') | ||||
|         ax2.axis('off') | ||||
|         ax3.axis('off') | ||||
|         if show == 1: | ||||
|             plt.show() | ||||
|         if save == 1: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|         plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 合并四个图片 | ||||
| def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
|     if num != 4: | ||||
|         print('Error: The number of images should be four!') | ||||
|     else: | ||||
|         import matplotlib.pyplot as plt | ||||
|         import matplotlib.image as mpimg | ||||
|         fig = plt.figure(figsize=figsize) | ||||
|         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  | ||||
|         ax1 = fig.add_subplot(221) | ||||
|         ax2 = fig.add_subplot(222) | ||||
|         ax3 = fig.add_subplot(223) | ||||
|         ax4 = fig.add_subplot(224) | ||||
|         image_1 = mpimg.imread(image_path_array[0]) | ||||
|         image_2 = mpimg.imread(image_path_array[1]) | ||||
|         image_3 = mpimg.imread(image_path_array[2]) | ||||
|         image_4 = mpimg.imread(image_path_array[3]) | ||||
|         ax1.imshow(image_1) | ||||
|         ax2.imshow(image_2) | ||||
|         ax3.imshow(image_3) | ||||
|         ax4.imshow(image_4) | ||||
|         ax1.axis('off') | ||||
|         ax2.axis('off') | ||||
|         ax3.axis('off') | ||||
|         ax4.axis('off') | ||||
|         if show == 1: | ||||
|             plt.show() | ||||
|         if save == 1: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|         plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 对于某个目录中的txt文件,批量读取和画图 | ||||
| def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): | ||||
|     import re | ||||
|     import os | ||||
|     import guan | ||||
|     for root, dirs, files in os.walk(directory): | ||||
|         for file in files: | ||||
|             if re.search('^txt.', file[::-1]): | ||||
|                 filename = file[:-4] | ||||
|                 x_array, y_array = guan.read_one_dimensional_data(filename=filename) | ||||
|                 guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename) | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 制作GIF动画 | ||||
| def make_gif(image_path_array, filename='a', duration=0.1): | ||||
|     import imageio | ||||
|     images = [] | ||||
|     for image_path in image_path_array: | ||||
|         im = imageio.imread(image_path) | ||||
|         images.append(im) | ||||
|     imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 选取颜色 | ||||
| def color_matplotlib(): | ||||
|     color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return color_array | ||||
							
								
								
									
										604
									
								
								PyPI/src/guan/quantum_transport.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										604
									
								
								PyPI/src/guan/quantum_transport.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,604 @@ | ||||
| # Module: quantum_transport | ||||
|  | ||||
| # 计算电导 | ||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     for ix in range(length): | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length-1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算不同费米能下的电导 | ||||
| def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     dim = np.array(fermi_energy_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for fermi_energy in fermi_energy_array: | ||||
|         conductance_array[i0] = np.real(guan.calculate_conductance(fermi_energy, h00, h01, length)) | ||||
|         if print_show == 1: | ||||
|             print(fermi_energy, conductance_array[i0]) | ||||
|         i0 += 1 | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在势垒散射下的电导 | ||||
| def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1): | ||||
|     import numpy as np | ||||
|     import copy | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     for ix in range(length): | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif int(length/2-barrier_length/2)<=ix<int(length/2+barrier_length/2): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+barrier_potential*np.identity(dim), h01, green_nn_n, broadening=0)  | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         elif ix != length-1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在无序散射下的电导 | ||||
| def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1): | ||||
|     import numpy as np | ||||
|     import copy | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     conductance_averaged = 0 | ||||
|     for times in range(calculation_times): | ||||
|         for ix in range(length+2): | ||||
|             disorder = np.zeros((dim, dim)) | ||||
|             for dim0 in range(dim): | ||||
|                 if np.random.uniform(0, 1)<=disorder_concentration: | ||||
|                     disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) | ||||
|             if ix == 0: | ||||
|                 green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|                 green_0n_n = copy.deepcopy(green_nn_n) | ||||
|             elif ix != length+1: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) | ||||
|                 green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|             else: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|                 green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|         conductance_averaged += conductance | ||||
|     conductance_averaged = conductance_averaged/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_averaged | ||||
|  | ||||
| # 计算在无序垂直切片的散射下的电导 | ||||
| def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     for ix in range(length+2): | ||||
|         disorder = np.zeros((dim, dim)) | ||||
|         if np.random.uniform(0, 1)<=disorder_concentration: | ||||
|             disorder = np.random.uniform(-disorder_intensity, disorder_intensity)*np.eye(dim) | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length+1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在无序水平切片的散射下的电导 | ||||
| def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     disorder = np.zeros((dim, dim)) | ||||
|     for dim0 in range(dim): | ||||
|         if np.random.uniform(0, 1)<=disorder_concentration: | ||||
|             disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) | ||||
|     for ix in range(length+2): | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length+1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在随机空位的散射下的电导 | ||||
| def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     for ix in range(length+2): | ||||
|         random_vacancy = np.zeros((dim, dim)) | ||||
|         for dim0 in range(dim): | ||||
|             if np.random.uniform(0, 1)<=vacancy_concentration: | ||||
|                 random_vacancy[dim0, dim0] = vacancy_potential | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length+1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+random_vacancy, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在不同无序散射强度下的电导 | ||||
| def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     dim = np.array(disorder_intensity_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for disorder_intensity in disorder_intensity_array: | ||||
|         for times in range(calculation_times): | ||||
|             conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) | ||||
|         if print_show == 1: | ||||
|             print(disorder_intensity, conductance_array[i0]/calculation_times) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在不同无序浓度下的电导 | ||||
| def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     dim = np.array(disorder_concentration_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for disorder_concentration in disorder_concentration_array: | ||||
|         for times in range(calculation_times): | ||||
|             conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) | ||||
|         if print_show == 1: | ||||
|             print(disorder_concentration, conductance_array[i0]/calculation_times) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在不同无序散射长度下的电导 | ||||
| def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     dim = np.array(length_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for length in length_array: | ||||
|         for times in range(calculation_times): | ||||
|             conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) | ||||
|         if print_show == 1: | ||||
|             print(length, conductance_array[i0]/calculation_times) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算得到Gamma矩阵和格林函数,用于计算六端口的量子输运 | ||||
| def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     #   ---------------- Geometry ---------------- | ||||
|     #               lead2         lead3 | ||||
|     #   lead1(L)                          lead4(R)   | ||||
|     #               lead6         lead5  | ||||
|     h00_for_lead_1 = h00_for_lead_4 | ||||
|     h00_for_lead_2 = h00_for_lead_2 | ||||
|     h00_for_lead_3 = h00_for_lead_2 | ||||
|     h00_for_lead_5 = h00_for_lead_2 | ||||
|     h00_for_lead_6 = h00_for_lead_2 | ||||
|     h00_for_lead_4 = h00_for_lead_4 | ||||
|     h01_for_lead_1 = h01_for_lead_4.transpose().conj() | ||||
|     h01_for_lead_2 = h01_for_lead_2 | ||||
|     h01_for_lead_3 = h01_for_lead_2 | ||||
|     h01_for_lead_4 = h01_for_lead_4 | ||||
|     h01_for_lead_5 = h01_for_lead_2.transpose().conj() | ||||
|     h01_for_lead_6 = h01_for_lead_2.transpose().conj() | ||||
|     h_lead1_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) | ||||
|     h_lead2_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) | ||||
|     h_lead3_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) | ||||
|     h_lead4_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) | ||||
|     h_lead5_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) | ||||
|     h_lead6_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex) | ||||
|     move = moving_step_of_leads # the step of leads 2,3,6,5 moving to center | ||||
|     h_lead1_to_center[0:internal_degree*width, 0:internal_degree*width] = h01_for_lead_1.transpose().conj() | ||||
|     h_lead4_to_center[0:internal_degree*width, internal_degree*width*(length-1):internal_degree*width*length] = h01_for_lead_4.transpose().conj() | ||||
|     for i0 in range(width): | ||||
|         begin_index = internal_degree*i0+0 | ||||
|         end_index = internal_degree*i0+internal_degree | ||||
|         h_lead2_to_center[begin_index:end_index, internal_degree*(width*(move+i0)+(width-1))+0:internal_degree*(width*(move+i0)+(width-1))+internal_degree] = h01_for_lead_2.transpose().conj()[begin_index:end_index, begin_index:end_index] | ||||
|         h_lead3_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+(width-1))+0:internal_degree*(width*(length-move-1-i0)+(width-1))+internal_degree] = h01_for_lead_3.transpose().conj()[begin_index:end_index, begin_index:end_index] | ||||
|         h_lead5_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+0)+0:internal_degree*(width*(length-move-1-i0)+0)+internal_degree] = h01_for_lead_5.transpose().conj()[begin_index:end_index, begin_index:end_index] | ||||
|         h_lead6_to_center[begin_index:end_index, internal_degree*(width*(i0+move)+0)+0:internal_degree*(width*(i0+move)+0)+internal_degree] = h01_for_lead_6.transpose().conj()[begin_index:end_index, begin_index:end_index]    | ||||
|     self_energy1, gamma1 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_1, h01_for_lead_1, h_lead1_to_center) | ||||
|     self_energy2, gamma2 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_2, h01_for_lead_1, h_lead2_to_center) | ||||
|     self_energy3, gamma3 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_3, h01_for_lead_1, h_lead3_to_center) | ||||
|     self_energy4, gamma4 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_4, h01_for_lead_1, h_lead4_to_center) | ||||
|     self_energy5, gamma5 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_5, h01_for_lead_1, h_lead5_to_center) | ||||
|     self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center) | ||||
|     gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6] | ||||
|     green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return gamma_array, green | ||||
|  | ||||
| # 计算六端口的透射矩阵 | ||||
| def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width, length, internal_degree, moving_step_of_leads) | ||||
|     transmission_matrix = np.zeros((6, 6), dtype=complex) | ||||
|     channel_lead_4 = guan.calculate_conductance(fermi_energy, h00_for_lead_4, h01_for_lead_4, length=3) | ||||
|     channel_lead_2 = guan.calculate_conductance(fermi_energy, h00_for_lead_2, h01_for_lead_2, length=3) | ||||
|     for i0 in range(6): | ||||
|         for j0 in range(6): | ||||
|             if j0!=i0: | ||||
|                 transmission_matrix[i0, j0] = np.trace(np.dot(np.dot(np.dot(gamma_array[i0], green), gamma_array[j0]), green.transpose().conj())) | ||||
|     for i0 in range(6): | ||||
|         if i0 == 0 or i0 == 3: | ||||
|             transmission_matrix[i0, i0] = channel_lead_4 | ||||
|         else: | ||||
|             transmission_matrix[i0, i0] = channel_lead_2 | ||||
|     for i0 in range(6): | ||||
|         for j0 in range(6): | ||||
|             if j0!=i0: | ||||
|                 transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0] | ||||
|     transmission_matrix = np.real(transmission_matrix) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix | ||||
|  | ||||
| # 计算从电极1出发的透射系数 | ||||
| def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width, length, internal_degree, moving_step_of_leads) | ||||
|     transmission_12 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[1]), green.transpose().conj()))) | ||||
|     transmission_13 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[2]), green.transpose().conj()))) | ||||
|     transmission_14 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[3]), green.transpose().conj()))) | ||||
|     transmission_15 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[4]), green.transpose().conj()))) | ||||
|     transmission_16 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[5]), green.transpose().conj()))) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 | ||||
|  | ||||
| # 通过动量k的虚部,判断通道为传播通道还是衰减通道 | ||||
| def if_active_channel(k_of_channel): | ||||
|     import numpy as np | ||||
|     if np.abs(np.imag(k_of_channel))<1e-6: | ||||
|         if_active = 1 | ||||
|     else: | ||||
|         if_active = 0 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return if_active | ||||
|  | ||||
| # 获取通道的动量和速度,用于计算散射矩阵 | ||||
| def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import copy | ||||
|     import guan | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = guan.transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     k_of_channel = np.log(eigenvalue)/1j | ||||
|     ind = np.argsort(np.real(k_of_channel)) | ||||
|     k_of_channel = np.sort(k_of_channel) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     temp2 = np.zeros((2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         temp2[i0] = eigenvalue[ind0] | ||||
|         i0 += 1 | ||||
|     eigenvalue = copy.deepcopy(temp2) | ||||
|     temp = temp[0:dim, :] | ||||
|     factor = np.zeros(2*dim) | ||||
|     for dim0 in range(dim): | ||||
|         factor = factor+np.square(np.abs(temp[dim0, :])) | ||||
|     for dim0 in range(2*dim): | ||||
|         temp[:, dim0] = temp[:, dim0]/math.sqrt(factor[dim0]) | ||||
|     velocity_of_channel = np.zeros((2*dim), dtype=complex) | ||||
|     for dim0 in range(2*dim): | ||||
|         velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] | ||||
|     velocity_of_channel = -2*np.imag(velocity_of_channel) | ||||
|     eigenvector = copy.deepcopy(temp)  | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_of_channel, velocity_of_channel, eigenvalue, eigenvector | ||||
|  | ||||
| # 获取分类后的动量和速度,以及U和F,用于计算散射矩阵 | ||||
| def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     k_of_channel, velocity_of_channel, eigenvalue, eigenvector = guan.get_k_and_velocity_of_channel(fermi_energy, h00, h01) | ||||
|     ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0 | ||||
|     k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex) | ||||
|     velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex) | ||||
|     lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex) | ||||
|     u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex) | ||||
|     for dim0 in range(2*dim): | ||||
|         if_active = guan.if_active_channel(k_of_channel[dim0]) | ||||
|         if guan.if_active_channel(k_of_channel[dim0]) == 1: | ||||
|             direction = np.sign(velocity_of_channel[dim0]) | ||||
|         else: | ||||
|             direction = np.sign(np.imag(k_of_channel[dim0])) | ||||
|         if direction == 1: | ||||
|             if if_active == 1:  # right-moving active channel | ||||
|                 k_right[ind_right_active] = k_of_channel[dim0] | ||||
|                 velocity_right[ind_right_active] = velocity_of_channel[dim0] | ||||
|                 lambda_right[ind_right_active] = eigenvalue[dim0] | ||||
|                 u_right[:, ind_right_active] = eigenvector[:, dim0] | ||||
|                 ind_right_active += 1 | ||||
|             else:               # right-moving evanescent channel | ||||
|                 k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0] | ||||
|                 velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0] | ||||
|                 lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0] | ||||
|                 u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0] | ||||
|                 ind_right_evanescent += 1 | ||||
|         else: | ||||
|             if if_active == 1:  # left-moving active channel | ||||
|                 k_left[ind_left_active] = k_of_channel[dim0] | ||||
|                 velocity_left[ind_left_active] = velocity_of_channel[dim0] | ||||
|                 lambda_left[ind_left_active] = eigenvalue[dim0] | ||||
|                 u_left[:, ind_left_active] = eigenvector[:, dim0] | ||||
|                 ind_left_active += 1 | ||||
|             else:               # left-moving evanescent channel | ||||
|                 k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0] | ||||
|                 velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0] | ||||
|                 lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0] | ||||
|                 u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0] | ||||
|                 ind_left_evanescent += 1 | ||||
|     lambda_matrix_right = np.diag(lambda_right) | ||||
|     lambda_matrix_left = np.diag(lambda_left) | ||||
|     f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) | ||||
|     f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active | ||||
|  | ||||
| # 计算散射矩阵 | ||||
| def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import copy | ||||
|     import guan | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(h01, f_right) | ||||
|     left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) | ||||
|     for i0 in range(length): | ||||
|         if i0 == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_00_n = copy.deepcopy(green_nn_n) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|             green_n0_n = copy.deepcopy(green_nn_n) | ||||
|         elif i0 != length-1:  | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)  | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|         green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) | ||||
|         green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n) | ||||
|     temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) | ||||
|     transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)  | ||||
|     reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) | ||||
|     for dim0 in range(dim): | ||||
|         for dim1 in range(dim): | ||||
|             if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1]) | ||||
|             if if_active == 1: | ||||
|                 transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] | ||||
|                 reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] | ||||
|             else: | ||||
|                 transmission_matrix[dim0, dim1] = 0 | ||||
|                 reflection_matrix[dim0, dim1] = 0 | ||||
|     sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     for sum_of_tran_refl in sum_of_tran_refl_array: | ||||
|         if sum_of_tran_refl > 1.001: | ||||
|             print('Error Alert: scattering matrix is not normalized!') | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| # 从散射矩阵中,获取散射矩阵的信息 | ||||
| def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active): | ||||
|     import numpy as np | ||||
|     if np.array(transmission_matrix).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(transmission_matrix).shape[0] | ||||
|     number_of_active_channels = ind_right_active | ||||
|     number_of_evanescent_channels = dim-ind_right_active | ||||
|     k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active]) | ||||
|     k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active]) | ||||
|     velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active]) | ||||
|     velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active]) | ||||
|     transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])) | ||||
|     reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])) | ||||
|     total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) | ||||
|     total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels | ||||
|  | ||||
| # 已知h00和h01,计算散射矩阵并获得散射矩阵的信息 | ||||
| def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100): | ||||
|     import guan | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) | ||||
|  | ||||
|     number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) | ||||
|  | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
|     return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels | ||||
|  | ||||
| # 从散射矩阵中,打印出散射矩阵的信息 | ||||
| def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'): | ||||
|     if print_show == 1: | ||||
|         print('\nActive channel (left or right) = ', number_of_active_channels) | ||||
|         print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n') | ||||
|         print('K of right-moving active channels:\n', k_of_right_moving_active_channels) | ||||
|         print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n') | ||||
|         print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels) | ||||
|         print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n') | ||||
|         print('Transmission matrix:\n', transmission_matrix_for_active_channels) | ||||
|         print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n') | ||||
|         print('Total transmission of channels:\n', total_transmission_of_channels) | ||||
|         print('Total conductance = ', total_conductance, '\n') | ||||
|         print('Total reflection of channels:\n', total_reflection_of_channels) | ||||
|         print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n') | ||||
|     if write_file == 1: | ||||
|         with open(filename+file_format, 'w') as f: | ||||
|             f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n') | ||||
|             f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n') | ||||
|             f.write('Channel               K                                     Velocity\n') | ||||
|             for ind0 in range(number_of_active_channels): | ||||
|                 f.write('   '+str(ind0 + 1) + '   |    '+str(k_of_right_moving_active_channels[ind0])+'            ' + str(velocity_of_right_moving_active_channels[ind0])+'\n') | ||||
|             f.write('\n') | ||||
|             for ind0 in range(number_of_active_channels): | ||||
|                 f.write('  -' + str(ind0 + 1) + '   |    ' + str(k_of_left_moving_active_channels[ind0]) + '            ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n') | ||||
|             f.write('\nScattering matrix:\n              ') | ||||
|             for ind0 in range(number_of_active_channels): | ||||
|                 f.write(str(ind0+1)+'               ') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(number_of_active_channels): | ||||
|                 f.write('  '+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(number_of_active_channels): | ||||
|                     f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(number_of_active_channels): | ||||
|                 f.write(' -'+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(number_of_active_channels): | ||||
|                     f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n') | ||||
|             f.write('Total conductance = '+str(total_conductance)+'\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 已知h00和h01,计算散射矩阵并打印出散射矩阵的信息 | ||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) | ||||
|  | ||||
|     number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) | ||||
|  | ||||
|     guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format) | ||||
|  | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在无序下,计算散射矩阵 | ||||
| def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import copy | ||||
|     import guan | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(h01, f_right) | ||||
|     left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) | ||||
|     for i0 in range(length): | ||||
|         disorder = np.zeros((dim, dim)) | ||||
|         for dim0 in range(dim): | ||||
|             if np.random.uniform(0, 1)<=disorder_concentration: | ||||
|                 disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) | ||||
|         if i0 == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_00_n = copy.deepcopy(green_nn_n) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|             green_n0_n = copy.deepcopy(green_nn_n) | ||||
|         elif i0 != length-1:  | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)  | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|         green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) | ||||
|         green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n) | ||||
|     temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) | ||||
|     transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)  | ||||
|     reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) | ||||
|     for dim0 in range(dim): | ||||
|         for dim1 in range(dim): | ||||
|             if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1]) | ||||
|             if if_active == 1: | ||||
|                 transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] | ||||
|                 reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] | ||||
|             else: | ||||
|                 transmission_matrix[dim0, dim1] = 0 | ||||
|                 reflection_matrix[dim0, dim1] = 0 | ||||
|     sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     for sum_of_tran_refl in sum_of_tran_refl_array: | ||||
|         if sum_of_tran_refl > 1.001: | ||||
|             print('Error Alert: scattering matrix is not normalized!') | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| # 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息 | ||||
| def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1): | ||||
|     import guan | ||||
|     transmission_matrix_for_active_channels_averaged = 0 | ||||
|     reflection_matrix_for_active_channels_averaged = 0 | ||||
|     for i0 in range(calculation_times): | ||||
|         transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length, disorder_intensity, disorder_concentration) | ||||
|  | ||||
|         number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) | ||||
|  | ||||
|         transmission_matrix_for_active_channels_averaged += transmission_matrix_for_active_channels | ||||
|         reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels | ||||
|     transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times | ||||
|     reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged | ||||
							
								
								
									
										235
									
								
								PyPI/src/guan/read_and_write.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										235
									
								
								PyPI/src/guan/read_and_write.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,235 @@ | ||||
| # Module: read_and_write | ||||
|  | ||||
| # 将数据存到文件 | ||||
| def dump_data(data, filename, file_format='.txt'): | ||||
|     import pickle | ||||
|     with open(filename+file_format, 'wb') as f: | ||||
|         pickle.dump(data, f) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 从文件中恢复数据到变量 | ||||
| def load_data(filename, file_format='.txt'): | ||||
|     import pickle | ||||
|     with open(filename+file_format, 'rb') as f: | ||||
|         data = pickle.load(f) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return data | ||||
|  | ||||
| # 读取文件中的一维数据(每一行一组x和y) | ||||
| def read_one_dimensional_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x_array = np.array([]) | ||||
|     y_array = np.array([]) | ||||
|     for row in row_list: | ||||
|         column = np.array(row.split())  | ||||
|         if column.shape[0] != 0:   | ||||
|             x_array = np.append(x_array, [float(column[0])], axis=0)   | ||||
|             y_row = np.zeros(dim_column-1) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 y_row[dim0] = float(column[dim0+1]) | ||||
|             if np.array(y_array).shape[0] == 0: | ||||
|                 y_array = [y_row] | ||||
|             else: | ||||
|                 y_array = np.append(y_array, [y_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array | ||||
|  | ||||
| # 读取文件中的一维数据(每一行一组x和y)(支持复数形式) | ||||
| def read_one_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x_array = np.array([]) | ||||
|     y_array = np.array([]) | ||||
|     for row in row_list: | ||||
|         column = np.array(row.split())  | ||||
|         if column.shape[0] != 0:   | ||||
|             x_array = np.append(x_array, [complex(column[0])], axis=0)   | ||||
|             y_row = np.zeros(dim_column-1, dtype=complex) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 y_row[dim0] = complex(column[dim0+1]) | ||||
|             if np.array(y_array).shape[0] == 0: | ||||
|                 y_array = [y_row] | ||||
|             else: | ||||
|                 y_array = np.append(y_array, [y_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array | ||||
|  | ||||
| # 读取文件中的二维数据(第一行和列分别为横纵坐标) | ||||
| def read_two_dimensional_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x_array = np.array([]) | ||||
|     y_array = np.array([]) | ||||
|     matrix = np.array([]) | ||||
|     for i0 in range(row_list.shape[0]): | ||||
|         column = np.array(row_list[i0].split())  | ||||
|         if i0 == 0: | ||||
|             x_str = column[1::]  | ||||
|             x_array = np.zeros(x_str.shape[0]) | ||||
|             for i00 in range(x_str.shape[0]): | ||||
|                 x_array[i00] = float(x_str[i00])  | ||||
|         elif column.shape[0] != 0:  | ||||
|             y_array = np.append(y_array, [float(column[0])], axis=0)   | ||||
|             matrix_row = np.zeros(dim_column-1) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 matrix_row[dim0] = float(column[dim0+1]) | ||||
|             if np.array(matrix).shape[0] == 0: | ||||
|                 matrix = [matrix_row] | ||||
|             else: | ||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array, matrix | ||||
|  | ||||
| # 读取文件中的二维数据(第一行和列分别为横纵坐标)(支持复数形式) | ||||
| def read_two_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x_array = np.array([]) | ||||
|     y_array = np.array([]) | ||||
|     matrix = np.array([]) | ||||
|     for i0 in range(row_list.shape[0]): | ||||
|         column = np.array(row_list[i0].split())  | ||||
|         if i0 == 0: | ||||
|             x_str = column[1::]  | ||||
|             x_array = np.zeros(x_str.shape[0], dtype=complex) | ||||
|             for i00 in range(x_str.shape[0]): | ||||
|                 x_array[i00] = complex(x_str[i00])  | ||||
|         elif column.shape[0] != 0:  | ||||
|             y_array = np.append(y_array, [complex(column[0])], axis=0)   | ||||
|             matrix_row = np.zeros(dim_column-1, dtype=complex) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 matrix_row[dim0] = complex(column[dim0+1]) | ||||
|             if np.array(matrix).shape[0] == 0: | ||||
|                 matrix = [matrix_row] | ||||
|             else: | ||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array, matrix | ||||
|  | ||||
| # 读取文件中的二维数据(不包括x和y) | ||||
| def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'): | ||||
|     import numpy as np | ||||
|     matrix = np.loadtxt(filename+file_format) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return matrix | ||||
|  | ||||
| # 打开文件用于新增内容 | ||||
| def open_file(filename='a', file_format='.txt'): | ||||
|     f = open(filename+file_format, 'a', encoding='UTF-8') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return f | ||||
|  | ||||
| # 在文件中写入一维数据(每一行一组x和y) | ||||
| def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入一维数据(每一行一组x和y)(需要输入文件) | ||||
| def write_one_dimensional_data_without_opening_file(x_array, y_array, f): | ||||
|     import numpy as np | ||||
|     x_array = np.array(x_array) | ||||
|     y_array = np.array(y_array) | ||||
|     i0 = 0 | ||||
|     for x0 in x_array: | ||||
|         f.write(str(x0)+'   ') | ||||
|         if len(y_array.shape) == 1: | ||||
|             f.write(str(y_array[i0])+'\n') | ||||
|         elif len(y_array.shape) == 2: | ||||
|             for j0 in range(y_array.shape[1]): | ||||
|                 f.write(str(y_array[i0, j0])+'   ') | ||||
|             f.write('\n') | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(第一行和列分别为横纵坐标) | ||||
| def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(第一行和列分别为横纵坐标)(需要输入文件) | ||||
| def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f): | ||||
|     import numpy as np | ||||
|     x_array = np.array(x_array) | ||||
|     y_array = np.array(y_array) | ||||
|     matrix = np.array(matrix) | ||||
|     f.write('0   ') | ||||
|     for x0 in x_array: | ||||
|         f.write(str(x0)+'   ') | ||||
|     f.write('\n') | ||||
|     i0 = 0 | ||||
|     for y0 in y_array: | ||||
|         f.write(str(y0)) | ||||
|         j0 = 0 | ||||
|         for x0 in x_array: | ||||
|             f.write('   '+str(matrix[i0, j0])+'   ') | ||||
|             j0 += 1 | ||||
|         f.write('\n') | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(不包括x和y) | ||||
| def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f) | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(不包括x和y)(需要输入文件) | ||||
| def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f): | ||||
|     for row in matrix: | ||||
|         for element in row: | ||||
|             f.write(str(element)+'   ') | ||||
|         f.write('\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 以显示编号的样式,打印数组 | ||||
| def print_array_with_index(array, show_index=1, index_type=0): | ||||
|     if show_index==0: | ||||
|         for i0 in array: | ||||
|             print(i0) | ||||
|     else: | ||||
|         if index_type==0: | ||||
|             index = 0 | ||||
|             for i0 in array: | ||||
|                 print(index, i0) | ||||
|                 index += 1 | ||||
|         else: | ||||
|             index = 0 | ||||
|             for i0 in array: | ||||
|                 index += 1 | ||||
|                 print(index, i0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
							
								
								
									
										552
									
								
								PyPI/src/guan/topological_invariant.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										552
									
								
								PyPI/src/guan/topological_invariant.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,552 @@ | ||||
| # Module: topological_invariant | ||||
|  | ||||
| # 通过高效法计算方格子的陈数 | ||||
| def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import cmath | ||||
|     import guan | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     delta = 2*math.pi/precision | ||||
|     chern_number = np.zeros(dim, dtype=complex) | ||||
|     for kx in np.arange(-math.pi, math.pi, delta): | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         for ky in np.arange(-math.pi, math.pi, delta): | ||||
|             H = hamiltonian_function(kx, ky) | ||||
|             vector = guan.calculate_eigenvector(H) | ||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||
|             vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) | ||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||
|             vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) | ||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||
|             vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) | ||||
|             for i in range(dim): | ||||
|                 vector_i = vector[:, i] | ||||
|                 vector_delta_kx_i = vector_delta_kx[:, i] | ||||
|                 vector_delta_ky_i = vector_delta_ky[:, i] | ||||
|                 vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||
|                 Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||
|                 Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||
|                 Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||
|                 Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||
|                 F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                 chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*math.pi*1j) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过高效法计算方格子的陈数(可计算简并的情况) | ||||
| def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):  | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import cmath | ||||
|     delta = 2*math.pi/precision | ||||
|     chern_number = 0 | ||||
|     for kx in np.arange(-math.pi, math.pi, delta): | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         for ky in np.arange(-math.pi, math.pi, delta): | ||||
|             H = hamiltonian_function(kx, ky) | ||||
|             eigenvalue, vector = np.linalg.eigh(H)  | ||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||
|             eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)  | ||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||
|             eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)  | ||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||
|             eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) | ||||
|             dim = len(index_of_bands) | ||||
|             det_value = 1 | ||||
|             # first dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # second dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # third dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # four dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value= det_value*dot_matrix | ||||
|             chern_number += cmath.log(det_value) | ||||
|     chern_number = chern_number/(2*math.pi*1j) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过Wilson loop方法计算方格子的陈数 | ||||
| def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     delta = 2*math.pi/precision_of_plaquettes | ||||
|     chern_number = 0 | ||||
|     for kx in np.arange(-math.pi, math.pi, delta): | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         for ky in np.arange(-math.pi, math.pi, delta): | ||||
|             vector_array = [] | ||||
|             # line_1 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)  | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_2 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_3 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_4 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             wilson_loop = 1 | ||||
|             for i0 in range(len(vector_array)-1): | ||||
|                 wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1]) | ||||
|             wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0]) | ||||
|             arg = np.log(np.diagonal(wilson_loop))/1j | ||||
|             chern_number = chern_number + arg | ||||
|     chern_number = chern_number/(2*math.pi) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过Wilson loop方法计算方格子的陈数(可计算简并的情况) | ||||
| def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     delta = 2*math.pi/precision_of_plaquettes | ||||
|     chern_number = 0 | ||||
|     for kx in np.arange(-math.pi, math.pi, delta): | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         for ky in np.arange(-math.pi, math.pi, delta): | ||||
|             vector_array = [] | ||||
|             # line_1 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)  | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_2 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_3 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_4 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta)            | ||||
|             wilson_loop = 1 | ||||
|             dim = len(index_of_bands) | ||||
|             for i0 in range(len(vector_array)-1): | ||||
|                 dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|                 i01 = 0 | ||||
|                 for dim1 in index_of_bands: | ||||
|                     i02 = 0 | ||||
|                     for dim2 in index_of_bands: | ||||
|                         dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2]) | ||||
|                         i02 += 1 | ||||
|                     i01 += 1 | ||||
|                 det_value = np.linalg.det(dot_matrix) | ||||
|                 wilson_loop = wilson_loop*det_value | ||||
|             dot_matrix_plus = np.zeros((dim , dim), dtype=complex) | ||||
|             i01 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 i02 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2]) | ||||
|                     i02 += 1 | ||||
|                 i01 += 1 | ||||
|             det_value = np.linalg.det(dot_matrix_plus) | ||||
|             wilson_loop = wilson_loop*det_value | ||||
|             arg = np.log(wilson_loop)/1j | ||||
|             chern_number = chern_number + arg | ||||
|     chern_number = chern_number/(2*math.pi) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过高效法计算贝利曲率 | ||||
| def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     import guan | ||||
|     import math | ||||
|     if k_min == 'default': | ||||
|         k_min = -math.pi | ||||
|     if k_max == 'default': | ||||
|         k_max=math.pi | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     delta = (k_max-k_min)/precision | ||||
|     k_array = np.arange(k_min, k_max, delta) | ||||
|     berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for kx in k_array: | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         j0 = 0 | ||||
|         for ky in k_array: | ||||
|             H = hamiltonian_function(kx, ky) | ||||
|             vector = guan.calculate_eigenvector(H) | ||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||
|             vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) | ||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||
|             vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) | ||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||
|             vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) | ||||
|             for i in range(dim): | ||||
|                 vector_i = vector[:, i] | ||||
|                 vector_delta_kx_i = vector_delta_kx[:, i] | ||||
|                 vector_delta_ky_i = vector_delta_ky[:, i] | ||||
|                 vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||
|                 Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||
|                 Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||
|                 Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||
|                 Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||
|                 berry_curvature = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))/delta/delta*1j | ||||
|                 berry_curvature_array[j0, i0, i] = berry_curvature | ||||
|             j0 += 1 | ||||
|         i0 += 1 | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过高效法计算贝利曲率(可计算简并的情况) | ||||
| def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     import math | ||||
|     if k_min == 'default': | ||||
|         k_min = -math.pi | ||||
|     if k_max == 'default': | ||||
|         k_max=math.pi | ||||
|     delta = (k_max-k_min)/precision | ||||
|     k_array = np.arange(k_min, k_max, delta) | ||||
|     berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex) | ||||
|     i00 = 0 | ||||
|     for kx in np.arange(k_min, k_max, delta): | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         j00 = 0 | ||||
|         for ky in np.arange(k_min, k_max, delta): | ||||
|             H = hamiltonian_function(kx, ky) | ||||
|             eigenvalue, vector = np.linalg.eigh(H)  | ||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||
|             eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)  | ||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||
|             eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)  | ||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||
|             eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) | ||||
|             dim = len(index_of_bands) | ||||
|             det_value = 1 | ||||
|             # first dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # second dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # third dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # four dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value= det_value*dot_matrix | ||||
|             berry_curvature = cmath.log(det_value)/delta/delta*1j | ||||
|             berry_curvature_array[j00, i00] = berry_curvature | ||||
|             j00 += 1 | ||||
|         i00 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过Wilson loop方法计算贝里曲率 | ||||
| def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     if k_min == 'default': | ||||
|         k_min = -math.pi | ||||
|     if k_max == 'default': | ||||
|         k_max=math.pi | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     delta = (k_max-k_min)/precision_of_plaquettes | ||||
|     k_array = np.arange(k_min, k_max, delta) | ||||
|     berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex) | ||||
|     i00 = 0 | ||||
|     for kx in k_array: | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         j00 = 0 | ||||
|         for ky in k_array: | ||||
|             vector_array = [] | ||||
|             # line_1 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)  | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_2 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_3 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_4 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             wilson_loop = 1 | ||||
|             for i0 in range(len(vector_array)-1): | ||||
|                 wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1]) | ||||
|             wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0]) | ||||
|             berry_curvature = np.log(np.diagonal(wilson_loop))/delta/delta*1j | ||||
|             berry_curvature_array[j00, i00, :]=berry_curvature | ||||
|             j00 += 1 | ||||
|         i00 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过Wilson loop方法计算贝里曲率(可计算简并的情况) | ||||
| def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     if k_min == 'default': | ||||
|         k_min = -math.pi | ||||
|     if k_max == 'default': | ||||
|         k_max=math.pi | ||||
|     delta = (k_max-k_min)/precision_of_plaquettes | ||||
|     k_array = np.arange(k_min, k_max, delta) | ||||
|     berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex) | ||||
|     i000 = 0 | ||||
|     for kx in k_array: | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         j000 = 0 | ||||
|         for ky in k_array: | ||||
|             vector_array = [] | ||||
|             # line_1 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)  | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_2 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_3 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_4 | ||||
|             for i0 in range(precision_of_wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta)            | ||||
|             wilson_loop = 1 | ||||
|             dim = len(index_of_bands) | ||||
|             for i0 in range(len(vector_array)-1): | ||||
|                 dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|                 i01 = 0 | ||||
|                 for dim1 in index_of_bands: | ||||
|                     i02 = 0 | ||||
|                     for dim2 in index_of_bands: | ||||
|                         dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2]) | ||||
|                         i02 += 1 | ||||
|                     i01 += 1 | ||||
|                 det_value = np.linalg.det(dot_matrix) | ||||
|                 wilson_loop = wilson_loop*det_value | ||||
|             dot_matrix_plus = np.zeros((dim , dim), dtype=complex) | ||||
|             i01 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 i02 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2]) | ||||
|                     i02 += 1 | ||||
|                 i01 += 1 | ||||
|             det_value = np.linalg.det(dot_matrix_plus) | ||||
|             wilson_loop = wilson_loop*det_value | ||||
|             berry_curvature = np.log(wilson_loop)/delta/delta*1j | ||||
|             berry_curvature_array[j000, i000]=berry_curvature | ||||
|             j000 += 1 | ||||
|         i000 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 计算蜂窝格子的陈数(高效法) | ||||
| def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import cmath | ||||
|     import guan | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     chern_number = np.zeros(dim, dtype=complex) | ||||
|     L1 = 4*math.sqrt(3)*math.pi/9/a | ||||
|     L2 = 2*math.sqrt(3)*math.pi/9/a | ||||
|     L3 = 2*math.pi/3/a | ||||
|     delta1 = 2*L1/precision | ||||
|     delta3 = 2*L3/precision | ||||
|     for kx in np.arange(-L1, L1, delta1): | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         for ky in np.arange(-L3, L3, delta3): | ||||
|             if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*math.tan(math.pi/3)<=ky<=(L1-kx)*math.tan(math.pi/3)) or (kx<-L2 and  -(kx-(-L1))*math.tan(math.pi/3)<=ky<=(kx-(-L1))*math.tan(math.pi/3)): | ||||
|                 H = hamiltonian_function(kx, ky) | ||||
|                 vector = guan.calculate_eigenvector(H) | ||||
|                 H_delta_kx = hamiltonian_function(kx+delta1, ky)  | ||||
|                 vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) | ||||
|                 H_delta_ky = hamiltonian_function(kx, ky+delta3) | ||||
|                 vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) | ||||
|                 H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3) | ||||
|                 vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) | ||||
|                 for i in range(dim): | ||||
|                     vector_i = vector[:, i] | ||||
|                     vector_delta_kx_i = vector_delta_kx[:, i] | ||||
|                     vector_delta_ky_i = vector_delta_ky[:, i] | ||||
|                     vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||
|                     Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||
|                     Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||
|                     Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||
|                     Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||
|                     F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                     chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*math.pi*1j) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 计算Wilson loop | ||||
| def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     import math | ||||
|     if k_min == 'default': | ||||
|         k_min = -math.pi | ||||
|     if k_max == 'default': | ||||
|         k_max=math.pi | ||||
|     k_array = np.linspace(k_min, k_max, precision) | ||||
|     dim = np.array(hamiltonian_function(0)).shape[0] | ||||
|     wilson_loop_array = np.ones(dim, dtype=complex) | ||||
|     for i in range(dim): | ||||
|         if print_show == 1: | ||||
|             print(i) | ||||
|         eigenvector_array = [] | ||||
|         for k in k_array: | ||||
|             eigenvector  = guan.calculate_eigenvector(hamiltonian_function(k))   | ||||
|             if k != k_max: | ||||
|                 eigenvector_array.append(eigenvector[:, i]) | ||||
|             else: | ||||
|                 eigenvector_array.append(eigenvector_array[0]) | ||||
|         for i0 in range(precision-1): | ||||
|             F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) | ||||
|             wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return wilson_loop_array | ||||
		Reference in New Issue
	
	Block a user