0.0.118
This commit is contained in:
		
							
								
								
									
										16
									
								
								PyPI/src/guan.egg-info/PKG-INFO
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								PyPI/src/guan.egg-info/PKG-INFO
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.0.118 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
| Author-email: guanjihuan@163.com | ||||
| Project-URL: Bug Tracker, https://py.guanjihuan.com | ||||
| Classifier: Programming Language :: Python :: 3 | ||||
| Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3) | ||||
| Classifier: Operating System :: OS Independent | ||||
| Requires-Python: >=3.6 | ||||
| Description-Content-Type: text/markdown | ||||
| License-File: LICENSE | ||||
|  | ||||
| Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
							
								
								
									
										9
									
								
								PyPI/src/guan.egg-info/SOURCES.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								PyPI/src/guan.egg-info/SOURCES.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,9 @@ | ||||
| LICENSE | ||||
| README.md | ||||
| pyproject.toml | ||||
| setup.cfg | ||||
| src/guan/__init__.py | ||||
| src/guan.egg-info/PKG-INFO | ||||
| src/guan.egg-info/SOURCES.txt | ||||
| src/guan.egg-info/dependency_links.txt | ||||
| src/guan.egg-info/top_level.txt | ||||
							
								
								
									
										1
									
								
								PyPI/src/guan.egg-info/dependency_links.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								PyPI/src/guan.egg-info/dependency_links.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
|  | ||||
							
								
								
									
										1
									
								
								PyPI/src/guan.egg-info/top_level.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								PyPI/src/guan.egg-info/top_level.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
| guan | ||||
| @@ -2,7 +2,7 @@ | ||||
|  | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # The current version is guan-0.0.117, updated on July 21, 2022. | ||||
| # The current version is guan-0.0.118, updated on August 10, 2022. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| @@ -1560,26 +1560,26 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_funct | ||||
|         for ky in np.arange(-math.pi, math.pi, delta): | ||||
|             vector_array = [] | ||||
|             # line_1 | ||||
|             for i0 in range(precision_of_Wilson_loop+1): | ||||
|             for i0 in range(precision_of_Wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)  | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_2 | ||||
|             for i0 in range(precision_of_Wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1))   | ||||
|                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_3 | ||||
|             for i0 in range(precision_of_Wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta)   | ||||
|                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_4 | ||||
|             for i0 in range(precision_of_Wilson_loop-1): | ||||
|                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1))   | ||||
|             for i0 in range(precision_of_Wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user