0.0.118
This commit is contained in:
parent
4ee73721f3
commit
7472379475
BIN
PyPI/dist/guan-0.0.118-py3-none-any.whl
vendored
Normal file
BIN
PyPI/dist/guan-0.0.118-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
PyPI/dist/guan-0.0.118.tar.gz
vendored
Normal file
BIN
PyPI/dist/guan-0.0.118.tar.gz
vendored
Normal file
Binary file not shown.
@ -1,7 +1,7 @@
|
|||||||
[metadata]
|
[metadata]
|
||||||
# replace with your username:
|
# replace with your username:
|
||||||
name = guan
|
name = guan
|
||||||
version = 0.0.117
|
version = 0.0.118
|
||||||
author = guanjihuan
|
author = guanjihuan
|
||||||
author_email = guanjihuan@163.com
|
author_email = guanjihuan@163.com
|
||||||
description = An open source python package
|
description = An open source python package
|
||||||
|
16
PyPI/src/guan.egg-info/PKG-INFO
Normal file
16
PyPI/src/guan.egg-info/PKG-INFO
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
Metadata-Version: 2.1
|
||||||
|
Name: guan
|
||||||
|
Version: 0.0.118
|
||||||
|
Summary: An open source python package
|
||||||
|
Home-page: https://py.guanjihuan.com
|
||||||
|
Author: guanjihuan
|
||||||
|
Author-email: guanjihuan@163.com
|
||||||
|
Project-URL: Bug Tracker, https://py.guanjihuan.com
|
||||||
|
Classifier: Programming Language :: Python :: 3
|
||||||
|
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|
||||||
|
Classifier: Operating System :: OS Independent
|
||||||
|
Requires-Python: >=3.6
|
||||||
|
Description-Content-Type: text/markdown
|
||||||
|
License-File: LICENSE
|
||||||
|
|
||||||
|
Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
9
PyPI/src/guan.egg-info/SOURCES.txt
Normal file
9
PyPI/src/guan.egg-info/SOURCES.txt
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
LICENSE
|
||||||
|
README.md
|
||||||
|
pyproject.toml
|
||||||
|
setup.cfg
|
||||||
|
src/guan/__init__.py
|
||||||
|
src/guan.egg-info/PKG-INFO
|
||||||
|
src/guan.egg-info/SOURCES.txt
|
||||||
|
src/guan.egg-info/dependency_links.txt
|
||||||
|
src/guan.egg-info/top_level.txt
|
1
PyPI/src/guan.egg-info/dependency_links.txt
Normal file
1
PyPI/src/guan.egg-info/dependency_links.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
|
1
PyPI/src/guan.egg-info/top_level.txt
Normal file
1
PyPI/src/guan.egg-info/top_level.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
guan
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||||
|
|
||||||
# The current version is guan-0.0.117, updated on July 21, 2022.
|
# The current version is guan-0.0.118, updated on August 10, 2022.
|
||||||
|
|
||||||
# Installation: pip install --upgrade guan
|
# Installation: pip install --upgrade guan
|
||||||
|
|
||||||
@ -1560,26 +1560,26 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_funct
|
|||||||
for ky in np.arange(-math.pi, math.pi, delta):
|
for ky in np.arange(-math.pi, math.pi, delta):
|
||||||
vector_array = []
|
vector_array = []
|
||||||
# line_1
|
# line_1
|
||||||
for i0 in range(precision_of_Wilson_loop+1):
|
for i0 in range(precision_of_Wilson_loop):
|
||||||
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
|
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||||
vector_array.append(vector_delta)
|
vector_array.append(vector_delta)
|
||||||
# line_2
|
# line_2
|
||||||
for i0 in range(precision_of_Wilson_loop):
|
for i0 in range(precision_of_Wilson_loop):
|
||||||
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1))
|
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0)
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||||
vector_array.append(vector_delta)
|
vector_array.append(vector_delta)
|
||||||
# line_3
|
# line_3
|
||||||
for i0 in range(precision_of_Wilson_loop):
|
for i0 in range(precision_of_Wilson_loop):
|
||||||
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta)
|
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta)
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||||
vector_array.append(vector_delta)
|
vector_array.append(vector_delta)
|
||||||
# line_4
|
# line_4
|
||||||
for i0 in range(precision_of_Wilson_loop-1):
|
for i0 in range(precision_of_Wilson_loop):
|
||||||
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1))
|
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0)
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||||
vector_array.append(vector_delta)
|
vector_array.append(vector_delta)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user