0.1.100
This commit is contained in:
		| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.1.99 | ||||
| Version: 0.1.100 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -245,7 +245,7 @@ def load_train_data(x_train, y_train, batch_size=32): | ||||
|     train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | ||||
|     return train_loader | ||||
|  | ||||
| # 从pickle文件中读取输入数据和输出数据,用于训练或预测 | ||||
| # 从pickle文件(多个小文件)中读取输入数据和输出数据,用于训练或预测 | ||||
| def load_input_data_and_output_data_as_torch_tensors_with_pickle(index_range=[1, 2, 3], directory='./', input_filename='input_index=', output_filename='output_index=', type=None): | ||||
|     import guan | ||||
|     import numpy as np | ||||
| @@ -268,6 +268,23 @@ def load_input_data_and_output_data_as_torch_tensors_with_pickle(index_range=[1, | ||||
|     output_data = torch.from_numpy(output_data) | ||||
|     return input_data, output_data | ||||
|  | ||||
| # 从pickle文件(一个数组文件)中读取输入数据和输出数据,用于训练或预测 | ||||
| def load_input_data_and_output_data_as_torch_tensors_with_pickle_from_array_file(input_filename='input_file', output_filename='output_file', type=None): | ||||
|     import guan | ||||
|     import numpy as np | ||||
|     import torch | ||||
|     input_data = guan.load_data(filename=input_filename) | ||||
|     output_data = guan.load_data(filename=output_filename) | ||||
|     if type == None: | ||||
|         input_data = np.array(input_data) | ||||
|         output_data= np.array(output_data) | ||||
|     else: | ||||
|         input_data = np.array(input_data).astype(type) | ||||
|         output_data= np.array(output_data).astype(type) | ||||
|     input_data = torch.from_numpy(input_data) | ||||
|     output_data = torch.from_numpy(output_data) | ||||
|     return input_data, output_data | ||||
|  | ||||
| # 数据的主成分分析PCA | ||||
| def pca_of_data(data, n_components=None, standard=1): | ||||
|     from sklearn.decomposition import PCA | ||||
|   | ||||
		Reference in New Issue
	
	Block a user