0.1.99
This commit is contained in:
parent
831af1a157
commit
e4b96d78dd
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.1.98
|
||||
version = 0.1.99
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: guan
|
||||
Version: 0.1.98
|
||||
Version: 0.1.99
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
@ -18,6 +18,10 @@ def fully_connected_neural_network_with_one_hidden_layer(input_size=1, hidden_si
|
||||
hidden_output = torch.nn.functional.sigmoid(self.hidden_layer(x))
|
||||
elif activation == 'tanh':
|
||||
hidden_output = torch.nn.functional.tanh(self.hidden_layer(x))
|
||||
elif activation == 'gelu':
|
||||
hidden_output = torch.nn.functional.gelu(self.hidden_layer(x))
|
||||
elif activation == 'silu':
|
||||
hidden_output = torch.nn.functional.silu(self.hidden_layer(x))
|
||||
else:
|
||||
hidden_output = self.hidden_layer(x)
|
||||
output = self.output_layer(hidden_output)
|
||||
@ -44,6 +48,10 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s
|
||||
hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x))
|
||||
elif activation_1 == 'tanh':
|
||||
hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x))
|
||||
elif activation_1 == 'gelu':
|
||||
hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x))
|
||||
elif activation_1 == 'silu':
|
||||
hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x))
|
||||
else:
|
||||
hidden_output_1 = self.hidden_layer_1(x)
|
||||
|
||||
@ -55,6 +63,10 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s
|
||||
hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1))
|
||||
elif activation_2 == 'tanh':
|
||||
hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1))
|
||||
elif activation_2 == 'gelu':
|
||||
hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1))
|
||||
elif activation_2 == 'silu':
|
||||
hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1))
|
||||
else:
|
||||
hidden_output_2 = self.hidden_layer_2(hidden_output_1)
|
||||
|
||||
@ -83,6 +95,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden
|
||||
hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x))
|
||||
elif activation_1 == 'tanh':
|
||||
hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x))
|
||||
elif activation_1 == 'gelu':
|
||||
hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x))
|
||||
elif activation_1 == 'silu':
|
||||
hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x))
|
||||
else:
|
||||
hidden_output_1 = self.hidden_layer_1(x)
|
||||
|
||||
@ -94,6 +110,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden
|
||||
hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1))
|
||||
elif activation_2 == 'tanh':
|
||||
hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1))
|
||||
elif activation_2 == 'gelu':
|
||||
hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1))
|
||||
elif activation_2 == 'silu':
|
||||
hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1))
|
||||
else:
|
||||
hidden_output_2 = self.hidden_layer_2(hidden_output_1)
|
||||
|
||||
@ -105,6 +125,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden
|
||||
hidden_output_3 = torch.nn.functional.sigmoid(self.hidden_layer_3(hidden_output_2))
|
||||
elif activation_3 == 'tanh':
|
||||
hidden_output_3 = torch.nn.functional.tanh(self.hidden_layer_3(hidden_output_2))
|
||||
elif activation_3 == 'gelu':
|
||||
hidden_output_3 = torch.nn.functional.gelu(self.hidden_layer_3(hidden_output_2))
|
||||
elif activation_3 == 'silu':
|
||||
hidden_output_3 = torch.nn.functional.silu(self.hidden_layer_3(hidden_output_2))
|
||||
else:
|
||||
hidden_output_3 = self.hidden_layer_3(hidden_output_2)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user