0.1.100
This commit is contained in:
		| @@ -1,7 +1,7 @@ | |||||||
| [metadata] | [metadata] | ||||||
| # replace with your username: | # replace with your username: | ||||||
| name = guan | name = guan | ||||||
| version = 0.1.99 | version = 0.1.100 | ||||||
| author = guanjihuan | author = guanjihuan | ||||||
| author_email = guanjihuan@163.com | author_email = guanjihuan@163.com | ||||||
| description = An open source python package | description = An open source python package | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| Metadata-Version: 2.1 | Metadata-Version: 2.1 | ||||||
| Name: guan | Name: guan | ||||||
| Version: 0.1.99 | Version: 0.1.100 | ||||||
| Summary: An open source python package | Summary: An open source python package | ||||||
| Home-page: https://py.guanjihuan.com | Home-page: https://py.guanjihuan.com | ||||||
| Author: guanjihuan | Author: guanjihuan | ||||||
|   | |||||||
| @@ -245,7 +245,7 @@ def load_train_data(x_train, y_train, batch_size=32): | |||||||
|     train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) |     train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) | ||||||
|     return train_loader |     return train_loader | ||||||
|  |  | ||||||
| # 从pickle文件中读取输入数据和输出数据,用于训练或预测 | # 从pickle文件(多个小文件)中读取输入数据和输出数据,用于训练或预测 | ||||||
| def load_input_data_and_output_data_as_torch_tensors_with_pickle(index_range=[1, 2, 3], directory='./', input_filename='input_index=', output_filename='output_index=', type=None): | def load_input_data_and_output_data_as_torch_tensors_with_pickle(index_range=[1, 2, 3], directory='./', input_filename='input_index=', output_filename='output_index=', type=None): | ||||||
|     import guan |     import guan | ||||||
|     import numpy as np |     import numpy as np | ||||||
| @@ -268,6 +268,23 @@ def load_input_data_and_output_data_as_torch_tensors_with_pickle(index_range=[1, | |||||||
|     output_data = torch.from_numpy(output_data) |     output_data = torch.from_numpy(output_data) | ||||||
|     return input_data, output_data |     return input_data, output_data | ||||||
|  |  | ||||||
|  | # 从pickle文件(一个数组文件)中读取输入数据和输出数据,用于训练或预测 | ||||||
|  | def load_input_data_and_output_data_as_torch_tensors_with_pickle_from_array_file(input_filename='input_file', output_filename='output_file', type=None): | ||||||
|  |     import guan | ||||||
|  |     import numpy as np | ||||||
|  |     import torch | ||||||
|  |     input_data = guan.load_data(filename=input_filename) | ||||||
|  |     output_data = guan.load_data(filename=output_filename) | ||||||
|  |     if type == None: | ||||||
|  |         input_data = np.array(input_data) | ||||||
|  |         output_data= np.array(output_data) | ||||||
|  |     else: | ||||||
|  |         input_data = np.array(input_data).astype(type) | ||||||
|  |         output_data= np.array(output_data).astype(type) | ||||||
|  |     input_data = torch.from_numpy(input_data) | ||||||
|  |     output_data = torch.from_numpy(output_data) | ||||||
|  |     return input_data, output_data | ||||||
|  |  | ||||||
| # 数据的主成分分析PCA | # 数据的主成分分析PCA | ||||||
| def pca_of_data(data, n_components=None, standard=1): | def pca_of_data(data, n_components=None, standard=1): | ||||||
|     from sklearn.decomposition import PCA |     from sklearn.decomposition import PCA | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user