This commit is contained in:
2025-12-15 15:16:26 +08:00
parent 7bcf9f0c87
commit d1df40c1cd
3 changed files with 121 additions and 2 deletions

View File

@@ -1,7 +1,7 @@
[metadata]
# replace with your username:
name = guan
version = 0.1.192
version = 0.1.193
author = guanjihuan
author_email = guanjihuan@163.com
description = An open source python package

View File

@@ -1,6 +1,6 @@
Metadata-Version: 2.4
Name: guan
Version: 0.1.192
Version: 0.1.193
Summary: An open source python package
Home-page: https://py.guanjihuan.com
Author: guanjihuan

View File

@@ -218,6 +218,125 @@ def langchain_chat_with_memory(prompt="你好", model="qwen-plus", temperature=0
print()
return response
# 使用 LangChain 调用工具对话(需要 API Key)
def langchain_chat_with_tools(prompt="你好", model="qwen-plus", temperature=0.7, system_message=None, tools=None, print_show=1, load_env=1):
import guan
if tools==None:
response = guan.langchain_chat_without_memory(prompt=prompt, model=model, temperature=temperature, system_message=system_message, print_show=print_show, load_env=load_env)
else:
import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.agents import create_openai_tools_agent, AgentExecutor
if load_env:
import dotenv
from pathlib import Path
import inspect
caller_frame = inspect.stack()[1]
caller_dir = Path(caller_frame.filename).parent
env_path = caller_dir / ".env"
if env_path.exists():
dotenv.load_dotenv(env_path)
llm = ChatOpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("DASHSCOPE_BASE_URL"),
model=model,
temperature=temperature,
streaming=False,
)
if system_message == None:
prompt_template = ChatPromptTemplate.from_messages([
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
else:
prompt_template = ChatPromptTemplate.from_messages([
("system", system_message),
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
agent = create_openai_tools_agent(llm, tools, prompt_template)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=bool(print_show),
handle_parsing_errors=True,
)
response_result = agent_executor.invoke({"input_message": prompt})
response = response_result["output"]
if print_show:
print('\n'+response)
return response
# 使用 LangChain 调用工具有记忆对话(记忆临时保存在函数的属性上,需要 API Key)
def langchain_chat_with_tools_and_memory(prompt="你好", model="qwen-plus", temperature=0.7, system_message=None, tools=None, session_id="default", print_show=1, load_env=1):
import guan
if tools==None:
response = guan.langchain_chat_with_memory(prompt=prompt, model=model, temperature=temperature, system_message=system_message, session_id=session_id, print_show=print_show, load_env=load_env)
else:
import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain.agents import create_openai_tools_agent, AgentExecutor
if load_env:
import dotenv
from pathlib import Path
import inspect
caller_frame = inspect.stack()[1]
caller_dir = Path(caller_frame.filename).parent
env_path = caller_dir / ".env"
if env_path.exists():
dotenv.load_dotenv(env_path)
llm = ChatOpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("DASHSCOPE_BASE_URL"),
model=model,
temperature=temperature,
streaming=False,
)
if system_message == None:
prompt_template = ChatPromptTemplate.from_messages([
MessagesPlaceholder("history"),
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
else:
prompt_template = ChatPromptTemplate.from_messages([
("system", system_message),
MessagesPlaceholder("history"),
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
if not hasattr(langchain_chat_with_tools_and_memory, "store"):
langchain_chat_with_tools_and_memory.store = {}
def get_session_history(sid: str):
if sid not in langchain_chat_with_tools_and_memory.store:
langchain_chat_with_tools_and_memory.store[sid] = ChatMessageHistory()
return langchain_chat_with_tools_and_memory.store[sid]
agent = create_openai_tools_agent(llm, tools, prompt_template)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=bool(print_show),
handle_parsing_errors=True,
)
agent_with_chat_history = RunnableWithMessageHistory(
agent_executor,
get_session_history,
input_messages_key="input_message",
history_messages_key="history",
)
response_result = agent_with_chat_history.invoke({"input_message": prompt}, config={"configurable": {"session_id": session_id}})
response = response_result["output"]
if print_show:
print('\n'+response)
return response
# 使用 Ollama 本地模型对话(需要运行 Ollama 和下载对应的模型)
def ollama_chat(prompt='你好/no_think', model="qwen3:0.6b", temperature=0.8, print_show=1):
import ollama