0.1.99
This commit is contained in:
		| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.1.98 | ||||
| Version: 0.1.99 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -18,6 +18,10 @@ def fully_connected_neural_network_with_one_hidden_layer(input_size=1, hidden_si | ||||
|                 hidden_output = torch.nn.functional.sigmoid(self.hidden_layer(x)) | ||||
|             elif activation == 'tanh': | ||||
|                 hidden_output = torch.nn.functional.tanh(self.hidden_layer(x)) | ||||
|             elif activation == 'gelu': | ||||
|                 hidden_output = torch.nn.functional.gelu(self.hidden_layer(x)) | ||||
|             elif activation == 'silu': | ||||
|                 hidden_output = torch.nn.functional.silu(self.hidden_layer(x)) | ||||
|             else: | ||||
|                 hidden_output = self.hidden_layer(x) | ||||
|             output = self.output_layer(hidden_output) | ||||
| @@ -44,6 +48,10 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s | ||||
|                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'tanh': | ||||
|                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'gelu': | ||||
|                 hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'silu': | ||||
|                 hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x)) | ||||
|             else: | ||||
|                 hidden_output_1 = self.hidden_layer_1(x) | ||||
|              | ||||
| @@ -55,6 +63,10 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s | ||||
|                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'tanh': | ||||
|                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'gelu': | ||||
|                 hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'silu': | ||||
|                 hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1)) | ||||
|             else: | ||||
|                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) | ||||
|              | ||||
| @@ -83,6 +95,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | ||||
|                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'tanh': | ||||
|                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'gelu': | ||||
|                 hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'silu': | ||||
|                 hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x)) | ||||
|             else: | ||||
|                 hidden_output_1 = self.hidden_layer_1(x) | ||||
|              | ||||
| @@ -94,6 +110,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | ||||
|                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'tanh': | ||||
|                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'gelu': | ||||
|                 hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'silu': | ||||
|                 hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1)) | ||||
|             else: | ||||
|                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) | ||||
|  | ||||
| @@ -105,6 +125,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | ||||
|                 hidden_output_3 = torch.nn.functional.sigmoid(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'tanh': | ||||
|                 hidden_output_3 = torch.nn.functional.tanh(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'gelu': | ||||
|                 hidden_output_3 = torch.nn.functional.gelu(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'silu': | ||||
|                 hidden_output_3 = torch.nn.functional.silu(self.hidden_layer_3(hidden_output_2)) | ||||
|             else: | ||||
|                 hidden_output_3 = self.hidden_layer_3(hidden_output_2) | ||||
|              | ||||
|   | ||||
		Reference in New Issue
	
	Block a user