0.1.99
This commit is contained in:
		| @@ -1,7 +1,7 @@ | |||||||
| [metadata] | [metadata] | ||||||
| # replace with your username: | # replace with your username: | ||||||
| name = guan | name = guan | ||||||
| version = 0.1.98 | version = 0.1.99 | ||||||
| author = guanjihuan | author = guanjihuan | ||||||
| author_email = guanjihuan@163.com | author_email = guanjihuan@163.com | ||||||
| description = An open source python package | description = An open source python package | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| Metadata-Version: 2.1 | Metadata-Version: 2.1 | ||||||
| Name: guan | Name: guan | ||||||
| Version: 0.1.98 | Version: 0.1.99 | ||||||
| Summary: An open source python package | Summary: An open source python package | ||||||
| Home-page: https://py.guanjihuan.com | Home-page: https://py.guanjihuan.com | ||||||
| Author: guanjihuan | Author: guanjihuan | ||||||
|   | |||||||
| @@ -18,6 +18,10 @@ def fully_connected_neural_network_with_one_hidden_layer(input_size=1, hidden_si | |||||||
|                 hidden_output = torch.nn.functional.sigmoid(self.hidden_layer(x)) |                 hidden_output = torch.nn.functional.sigmoid(self.hidden_layer(x)) | ||||||
|             elif activation == 'tanh': |             elif activation == 'tanh': | ||||||
|                 hidden_output = torch.nn.functional.tanh(self.hidden_layer(x)) |                 hidden_output = torch.nn.functional.tanh(self.hidden_layer(x)) | ||||||
|  |             elif activation == 'gelu': | ||||||
|  |                 hidden_output = torch.nn.functional.gelu(self.hidden_layer(x)) | ||||||
|  |             elif activation == 'silu': | ||||||
|  |                 hidden_output = torch.nn.functional.silu(self.hidden_layer(x)) | ||||||
|             else: |             else: | ||||||
|                 hidden_output = self.hidden_layer(x) |                 hidden_output = self.hidden_layer(x) | ||||||
|             output = self.output_layer(hidden_output) |             output = self.output_layer(hidden_output) | ||||||
| @@ -44,6 +48,10 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s | |||||||
|                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) |                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) | ||||||
|             elif activation_1 == 'tanh': |             elif activation_1 == 'tanh': | ||||||
|                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) |                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) | ||||||
|  |             elif activation_1 == 'gelu': | ||||||
|  |                 hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x)) | ||||||
|  |             elif activation_1 == 'silu': | ||||||
|  |                 hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x)) | ||||||
|             else: |             else: | ||||||
|                 hidden_output_1 = self.hidden_layer_1(x) |                 hidden_output_1 = self.hidden_layer_1(x) | ||||||
|              |              | ||||||
| @@ -55,6 +63,10 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s | |||||||
|                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) |                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) | ||||||
|             elif activation_2 == 'tanh': |             elif activation_2 == 'tanh': | ||||||
|                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) |                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) | ||||||
|  |             elif activation_2 == 'gelu': | ||||||
|  |                 hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1)) | ||||||
|  |             elif activation_2 == 'silu': | ||||||
|  |                 hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1)) | ||||||
|             else: |             else: | ||||||
|                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) |                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) | ||||||
|              |              | ||||||
| @@ -83,6 +95,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | |||||||
|                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) |                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) | ||||||
|             elif activation_1 == 'tanh': |             elif activation_1 == 'tanh': | ||||||
|                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) |                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) | ||||||
|  |             elif activation_1 == 'gelu': | ||||||
|  |                 hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x)) | ||||||
|  |             elif activation_1 == 'silu': | ||||||
|  |                 hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x)) | ||||||
|             else: |             else: | ||||||
|                 hidden_output_1 = self.hidden_layer_1(x) |                 hidden_output_1 = self.hidden_layer_1(x) | ||||||
|              |              | ||||||
| @@ -94,6 +110,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | |||||||
|                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) |                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) | ||||||
|             elif activation_2 == 'tanh': |             elif activation_2 == 'tanh': | ||||||
|                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) |                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) | ||||||
|  |             elif activation_2 == 'gelu': | ||||||
|  |                 hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1)) | ||||||
|  |             elif activation_2 == 'silu': | ||||||
|  |                 hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1)) | ||||||
|             else: |             else: | ||||||
|                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) |                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) | ||||||
|  |  | ||||||
| @@ -105,6 +125,10 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | |||||||
|                 hidden_output_3 = torch.nn.functional.sigmoid(self.hidden_layer_3(hidden_output_2)) |                 hidden_output_3 = torch.nn.functional.sigmoid(self.hidden_layer_3(hidden_output_2)) | ||||||
|             elif activation_3 == 'tanh': |             elif activation_3 == 'tanh': | ||||||
|                 hidden_output_3 = torch.nn.functional.tanh(self.hidden_layer_3(hidden_output_2)) |                 hidden_output_3 = torch.nn.functional.tanh(self.hidden_layer_3(hidden_output_2)) | ||||||
|  |             elif activation_3 == 'gelu': | ||||||
|  |                 hidden_output_3 = torch.nn.functional.gelu(self.hidden_layer_3(hidden_output_2)) | ||||||
|  |             elif activation_3 == 'silu': | ||||||
|  |                 hidden_output_3 = torch.nn.functional.silu(self.hidden_layer_3(hidden_output_2)) | ||||||
|             else: |             else: | ||||||
|                 hidden_output_3 = self.hidden_layer_3(hidden_output_2) |                 hidden_output_3 = self.hidden_layer_3(hidden_output_2) | ||||||
|              |              | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user