This commit is contained in:
2025-12-01 16:07:39 +08:00
parent 9aa09bdbfd
commit fd6f65c3be
3 changed files with 57 additions and 14 deletions

View File

@@ -1,7 +1,7 @@
[metadata]
# replace with your username:
name = guan
version = 0.1.187
version = 0.1.188
author = guanjihuan
author_email = guanjihuan@163.com
description = An open source python package

View File

@@ -1,6 +1,6 @@
Metadata-Version: 2.4
Name: guan
Version: 0.1.187
Version: 0.1.188
Summary: An open source python package
Home-page: https://py.guanjihuan.com
Author: guanjihuan

View File

@@ -60,12 +60,19 @@ def auto_chat_with_guide(prompt='你好', guide_message='回答字数少于30
response0 = guan.chat(prompt=response1+guide_message, model=model, stream=stream)
# 使用 LangChain 无记忆对话(需要 API Key)
def langchain_chat_without_memory(prompt="你好", temperature=0.7, system_message=None, print_show=1):
def langchain_chat_without_memory(prompt="你好", temperature=0.7, system_message=None, print_show=1, load_env=1):
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
import dotenv
import os
dotenv.load_dotenv()
if load_env:
import dotenv
from pathlib import Path
import inspect
caller_frame = inspect.stack()[1]
caller_dir = Path(caller_frame.filename).parent
env_path = caller_dir / ".env"
if env_path.exists():
dotenv.load_dotenv(env_path)
llm = ChatOpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("DASHSCOPE_BASE_URL"),
@@ -93,14 +100,21 @@ def langchain_chat_without_memory(prompt="你好", temperature=0.7, system_messa
return response
# 使用 LangChain 有记忆对话(记忆临时保存在函数的属性上,需要 API Key)
def langchain_chat_with_memory(prompt="你好", temperature=0.7, system_message=None, session_id="default", print_show=1):
def langchain_chat_with_memory(prompt="你好", temperature=0.7, system_message=None, session_id="default", print_show=1, load_env=1):
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_community.chat_message_histories import ChatMessageHistory
from dotenv import load_dotenv
import os
load_dotenv()
if load_env:
import dotenv
from pathlib import Path
import inspect
caller_frame = inspect.stack()[1]
caller_dir = Path(caller_frame.filename).parent
env_path = caller_dir / ".env"
if env_path.exists():
dotenv.load_dotenv(env_path)
llm = ChatOpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("DASHSCOPE_BASE_URL"),
@@ -175,7 +189,9 @@ def load_modelscope_model(model_name="D:/models/Qwen/Qwen3-0.6B"):
return model, tokenizer
# 使用 ModelScope 本地模型聊天
def modelscope_chat(model, tokenizer, prompt='你好 /no_think', history=[], temperature=0.7, top_p=0.8):
def modelscope_chat(model, tokenizer, prompt='你好 /no_think', history=[], temperature=0.7, top_p=0.8, print_show=1):
from threading import Thread
from transformers import TextIteratorStreamer
messages = history + [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
@@ -183,8 +199,25 @@ def modelscope_chat(model, tokenizer, prompt='你好 /no_think', history=[], tem
add_generation_prompt=True
)
inputs = tokenizer(text, return_tensors="pt")
response_ids = model.generate(**inputs, max_new_tokens=32768, temperature=temperature, top_p=top_p, do_sample=True)[0][len(inputs.input_ids[0]):].tolist()
response = tokenizer.decode(response_ids, skip_special_tokens=True)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
**inputs,
streamer=streamer,
max_new_tokens=32768,
temperature=temperature,
top_p=top_p,
do_sample=True,
repetition_penalty=1.2
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
response = ""
for new_text in streamer:
if print_show:
print(new_text, end="", flush=True)
response += new_text
if print_show:
print()
new_history = history + [
{"role": "user", "content": prompt},
{"role": "assistant", "content": response}
@@ -204,14 +237,24 @@ def load_llama_model(model_path="D:/models/Qwen/Qwen3-0.6B-GGUF/Qwen3-0.6B-Q8_0.
return llm
# 使用 LLaMA 本地模型聊天
def llama_chat(llm, prompt, history=[], temperature=0.7, top_p=0.8):
def llama_chat(llm, prompt='你好 /no_think', history=[], temperature=0.7, top_p=0.8, print_show=1):
new_history = history + [{"role": "user", "content": prompt}]
llm_response = llm.create_chat_completion(
messages=new_history,
temperature=temperature,
top_p=top_p,
repeat_penalty=1.5,
stream=True,
)
response = llm_response["choices"][0]["message"]["content"].strip()
response = ''
for chunk in llm_response:
delta = chunk['choices'][0]['delta']
if 'content' in delta:
token = delta['content']
response += token
if print_show:
print(token, end="", flush=True)
if print_show:
print()
new_history.append({"role": "assistant", "content": response})
return response, new_history
return response, new_history