0.1.188
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.1.187
|
||||
version = 0.1.188
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.4
|
||||
Name: guan
|
||||
Version: 0.1.187
|
||||
Version: 0.1.188
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
||||
@@ -60,12 +60,19 @@ def auto_chat_with_guide(prompt='你好', guide_message='(回答字数少于30
|
||||
response0 = guan.chat(prompt=response1+guide_message, model=model, stream=stream)
|
||||
|
||||
# 使用 LangChain 无记忆对话(需要 API Key)
|
||||
def langchain_chat_without_memory(prompt="你好", temperature=0.7, system_message=None, print_show=1):
|
||||
def langchain_chat_without_memory(prompt="你好", temperature=0.7, system_message=None, print_show=1, load_env=1):
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
import dotenv
|
||||
import os
|
||||
dotenv.load_dotenv()
|
||||
if load_env:
|
||||
import dotenv
|
||||
from pathlib import Path
|
||||
import inspect
|
||||
caller_frame = inspect.stack()[1]
|
||||
caller_dir = Path(caller_frame.filename).parent
|
||||
env_path = caller_dir / ".env"
|
||||
if env_path.exists():
|
||||
dotenv.load_dotenv(env_path)
|
||||
llm = ChatOpenAI(
|
||||
api_key=os.getenv("OPENAI_API_KEY"),
|
||||
base_url=os.getenv("DASHSCOPE_BASE_URL"),
|
||||
@@ -93,14 +100,21 @@ def langchain_chat_without_memory(prompt="你好", temperature=0.7, system_messa
|
||||
return response
|
||||
|
||||
# 使用 LangChain 有记忆对话(记忆临时保存在函数的属性上,需要 API Key)
|
||||
def langchain_chat_with_memory(prompt="你好", temperature=0.7, system_message=None, session_id="default", print_show=1):
|
||||
def langchain_chat_with_memory(prompt="你好", temperature=0.7, system_message=None, session_id="default", print_show=1, load_env=1):
|
||||
from langchain_openai import ChatOpenAI
|
||||
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain_core.runnables.history import RunnableWithMessageHistory
|
||||
from langchain_community.chat_message_histories import ChatMessageHistory
|
||||
from dotenv import load_dotenv
|
||||
import os
|
||||
load_dotenv()
|
||||
if load_env:
|
||||
import dotenv
|
||||
from pathlib import Path
|
||||
import inspect
|
||||
caller_frame = inspect.stack()[1]
|
||||
caller_dir = Path(caller_frame.filename).parent
|
||||
env_path = caller_dir / ".env"
|
||||
if env_path.exists():
|
||||
dotenv.load_dotenv(env_path)
|
||||
llm = ChatOpenAI(
|
||||
api_key=os.getenv("OPENAI_API_KEY"),
|
||||
base_url=os.getenv("DASHSCOPE_BASE_URL"),
|
||||
@@ -175,7 +189,9 @@ def load_modelscope_model(model_name="D:/models/Qwen/Qwen3-0.6B"):
|
||||
return model, tokenizer
|
||||
|
||||
# 使用 ModelScope 本地模型聊天
|
||||
def modelscope_chat(model, tokenizer, prompt='你好 /no_think', history=[], temperature=0.7, top_p=0.8):
|
||||
def modelscope_chat(model, tokenizer, prompt='你好 /no_think', history=[], temperature=0.7, top_p=0.8, print_show=1):
|
||||
from threading import Thread
|
||||
from transformers import TextIteratorStreamer
|
||||
messages = history + [{"role": "user", "content": prompt}]
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
@@ -183,8 +199,25 @@ def modelscope_chat(model, tokenizer, prompt='你好 /no_think', history=[], tem
|
||||
add_generation_prompt=True
|
||||
)
|
||||
inputs = tokenizer(text, return_tensors="pt")
|
||||
response_ids = model.generate(**inputs, max_new_tokens=32768, temperature=temperature, top_p=top_p, do_sample=True)[0][len(inputs.input_ids[0]):].tolist()
|
||||
response = tokenizer.decode(response_ids, skip_special_tokens=True)
|
||||
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
||||
generation_kwargs = dict(
|
||||
**inputs,
|
||||
streamer=streamer,
|
||||
max_new_tokens=32768,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
do_sample=True,
|
||||
repetition_penalty=1.2
|
||||
)
|
||||
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
||||
thread.start()
|
||||
response = ""
|
||||
for new_text in streamer:
|
||||
if print_show:
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
if print_show:
|
||||
print()
|
||||
new_history = history + [
|
||||
{"role": "user", "content": prompt},
|
||||
{"role": "assistant", "content": response}
|
||||
@@ -204,14 +237,24 @@ def load_llama_model(model_path="D:/models/Qwen/Qwen3-0.6B-GGUF/Qwen3-0.6B-Q8_0.
|
||||
return llm
|
||||
|
||||
# 使用 LLaMA 本地模型聊天
|
||||
def llama_chat(llm, prompt, history=[], temperature=0.7, top_p=0.8):
|
||||
def llama_chat(llm, prompt='你好 /no_think', history=[], temperature=0.7, top_p=0.8, print_show=1):
|
||||
new_history = history + [{"role": "user", "content": prompt}]
|
||||
llm_response = llm.create_chat_completion(
|
||||
messages=new_history,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
repeat_penalty=1.5,
|
||||
stream=True,
|
||||
)
|
||||
response = llm_response["choices"][0]["message"]["content"].strip()
|
||||
response = ''
|
||||
for chunk in llm_response:
|
||||
delta = chunk['choices'][0]['delta']
|
||||
if 'content' in delta:
|
||||
token = delta['content']
|
||||
response += token
|
||||
if print_show:
|
||||
print(token, end="", flush=True)
|
||||
if print_show:
|
||||
print()
|
||||
new_history.append({"role": "assistant", "content": response})
|
||||
return response, new_history
|
||||
return response, new_history
|
||||
Reference in New Issue
Block a user