Compare commits

..

3 Commits

Author SHA1 Message Date
d1df40c1cd 0.1.193 2025-12-15 15:16:26 +08:00
7bcf9f0c87 0.1.192 2025-12-08 12:46:30 +08:00
01a35075d2 0.1.191 2025-12-08 12:14:47 +08:00
4 changed files with 184 additions and 2 deletions

View File

@@ -1,7 +1,7 @@
[metadata] [metadata]
# replace with your username: # replace with your username:
name = guan name = guan
version = 0.1.190 version = 0.1.193
author = guanjihuan author = guanjihuan
author_email = guanjihuan@163.com author_email = guanjihuan@163.com
description = An open source python package description = An open source python package

View File

@@ -1,6 +1,6 @@
Metadata-Version: 2.4 Metadata-Version: 2.4
Name: guan Name: guan
Version: 0.1.190 Version: 0.1.193
Summary: An open source python package Summary: An open source python package
Home-page: https://py.guanjihuan.com Home-page: https://py.guanjihuan.com
Author: guanjihuan Author: guanjihuan

View File

@@ -218,6 +218,125 @@ def langchain_chat_with_memory(prompt="你好", model="qwen-plus", temperature=0
print() print()
return response return response
# 使用 LangChain 调用工具对话(需要 API Key)
def langchain_chat_with_tools(prompt="你好", model="qwen-plus", temperature=0.7, system_message=None, tools=None, print_show=1, load_env=1):
import guan
if tools==None:
response = guan.langchain_chat_without_memory(prompt=prompt, model=model, temperature=temperature, system_message=system_message, print_show=print_show, load_env=load_env)
else:
import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.agents import create_openai_tools_agent, AgentExecutor
if load_env:
import dotenv
from pathlib import Path
import inspect
caller_frame = inspect.stack()[1]
caller_dir = Path(caller_frame.filename).parent
env_path = caller_dir / ".env"
if env_path.exists():
dotenv.load_dotenv(env_path)
llm = ChatOpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("DASHSCOPE_BASE_URL"),
model=model,
temperature=temperature,
streaming=False,
)
if system_message == None:
prompt_template = ChatPromptTemplate.from_messages([
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
else:
prompt_template = ChatPromptTemplate.from_messages([
("system", system_message),
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
agent = create_openai_tools_agent(llm, tools, prompt_template)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=bool(print_show),
handle_parsing_errors=True,
)
response_result = agent_executor.invoke({"input_message": prompt})
response = response_result["output"]
if print_show:
print('\n'+response)
return response
# 使用 LangChain 调用工具有记忆对话(记忆临时保存在函数的属性上,需要 API Key)
def langchain_chat_with_tools_and_memory(prompt="你好", model="qwen-plus", temperature=0.7, system_message=None, tools=None, session_id="default", print_show=1, load_env=1):
import guan
if tools==None:
response = guan.langchain_chat_with_memory(prompt=prompt, model=model, temperature=temperature, system_message=system_message, session_id=session_id, print_show=print_show, load_env=load_env)
else:
import os
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain.agents import create_openai_tools_agent, AgentExecutor
if load_env:
import dotenv
from pathlib import Path
import inspect
caller_frame = inspect.stack()[1]
caller_dir = Path(caller_frame.filename).parent
env_path = caller_dir / ".env"
if env_path.exists():
dotenv.load_dotenv(env_path)
llm = ChatOpenAI(
api_key=os.getenv("OPENAI_API_KEY"),
base_url=os.getenv("DASHSCOPE_BASE_URL"),
model=model,
temperature=temperature,
streaming=False,
)
if system_message == None:
prompt_template = ChatPromptTemplate.from_messages([
MessagesPlaceholder("history"),
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
else:
prompt_template = ChatPromptTemplate.from_messages([
("system", system_message),
MessagesPlaceholder("history"),
("human", "{input_message}"),
("placeholder", "{agent_scratchpad}"),
])
if not hasattr(langchain_chat_with_tools_and_memory, "store"):
langchain_chat_with_tools_and_memory.store = {}
def get_session_history(sid: str):
if sid not in langchain_chat_with_tools_and_memory.store:
langchain_chat_with_tools_and_memory.store[sid] = ChatMessageHistory()
return langchain_chat_with_tools_and_memory.store[sid]
agent = create_openai_tools_agent(llm, tools, prompt_template)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=bool(print_show),
handle_parsing_errors=True,
)
agent_with_chat_history = RunnableWithMessageHistory(
agent_executor,
get_session_history,
input_messages_key="input_message",
history_messages_key="history",
)
response_result = agent_with_chat_history.invoke({"input_message": prompt}, config={"configurable": {"session_id": session_id}})
response = response_result["output"]
if print_show:
print('\n'+response)
return response
# 使用 Ollama 本地模型对话(需要运行 Ollama 和下载对应的模型) # 使用 Ollama 本地模型对话(需要运行 Ollama 和下载对应的模型)
def ollama_chat(prompt='你好/no_think', model="qwen3:0.6b", temperature=0.8, print_show=1): def ollama_chat(prompt='你好/no_think', model="qwen3:0.6b", temperature=0.8, print_show=1):
import ollama import ollama

View File

@@ -80,6 +80,69 @@ def loop_calculation_with_three_parameters(function_name, parameter_array_1, par
i1 += 1 i1 += 1
return result_array return result_array
# 文本对比
def word_diff(a, b, print_show=1):
import difflib
import jieba
import logging
jieba.setLogLevel(logging.ERROR)
a_words = jieba.lcut(a)
b_words = jieba.lcut(b)
sm = difflib.SequenceMatcher(None, a_words, b_words)
result = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == "equal":
result.extend(a_words[i1:i2])
elif tag == "delete":
result.append("\033[9;91m" + "".join(a_words[i1:i2]) + "\033[0m")
elif tag == "insert":
result.append("\033[92m" + "".join(b_words[j1:j2]) + "\033[0m")
elif tag == "replace":
result.append("\033[9;91m" + "".join(a_words[i1:i2]) + "\033[0m")
result.append(" ")
result.append("\033[92m" + "".join(b_words[j1:j2]) + "\033[0m")
diff_result = "".join(result)
if print_show:
print(diff_result)
return diff_result
# 文本对比写入HTML文件
def word_diff_to_html(a, b, filename='diff_result', write_file=1):
import difflib
from html import escape
import jieba
import logging
jieba.setLogLevel(logging.ERROR)
a_words = jieba.lcut(a)
b_words = jieba.lcut(b)
sm = difflib.SequenceMatcher(None, a_words, b_words)
html_parts = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
if tag == "equal":
html_parts.append("".join(map(escape, a_words[i1:i2])))
elif tag == "delete":
html_parts.append(f"<span style='background:#e74c3c;color:white;padding:1px 2px;border-radius:2px;text-decoration:line-through;'>"
+ "".join(map(escape, a_words[i1:i2]))
+ "</span>")
elif tag == "insert":
html_parts.append(f"<span style='background:#2ecc71;color:white;padding:1px 2px;border-radius:2px;'>"
+ "".join(map(escape, b_words[j1:j2]))
+ "</span>")
elif tag == "replace":
html_parts.append(f"<span style='background:#e74c3c;color:white;padding:1px 2px;border-radius:2px;text-decoration:line-through;'>"
+ "".join(map(escape, a_words[i1:i2]))
+ "</span>")
html_parts.append(" ")
html_parts.append(f"<span style='background:#2ecc71;color:white;padding:1px 2px;border-radius:2px;'>"
+ "".join(map(escape, b_words[j1:j2]))
+ "</span>")
diff_result = "".join(html_parts)
diff_result = diff_result.replace("\n", "<br>")
if write_file:
with open(filename+'.html', 'w', encoding='UTF-8') as f:
f.write(diff_result)
return diff_result
# 打印数组 # 打印数组
def print_array(array, line_break=0): def print_array(array, line_break=0):
if line_break == 0: if line_break == 0: