2022-07-21 15:30:47 +08:00

2457 lines
111 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
# The current version is guan-0.0.116, updated on July 21, 2022.
# Installation: pip install --upgrade guan
# Modules:
# # Module 1: basic functions
# # Module 2: Fourier transform
# # Module 3: Hamiltonian of finite size systems
# # Module 4: Hamiltonian of models in the reciprocal space
# # Module 5: band structures and wave functions
# # Module 6: Green functions
# # Module 7: density of states
# # Module 8: quantum transport
# # Module 9: topological invariant
# # Module 10: read and write
# # Module 11: plot figures
# # Module 12: data processing
# # Module 13: others
# import necessary packages
import numpy as np
import math
import cmath
import copy
import guan
# Module 1: basic functions
## test
def test():
print('\nSuccess in the installation of Guan package!\n')
## Pauli matrices
def sigma_0():
return np.eye(2)
def sigma_x():
return np.array([[0, 1],[1, 0]])
def sigma_y():
return np.array([[0, -1j],[1j, 0]])
def sigma_z():
return np.array([[1, 0],[0, -1]])
## Kronecker product of Pauli matrices
def sigma_00():
return np.kron(guan.sigma_0(), guan.sigma_0())
def sigma_0x():
return np.kron(guan.sigma_0(), guan.sigma_x())
def sigma_0y():
return np.kron(guan.sigma_0(), guan.sigma_y())
def sigma_0z():
return np.kron(guan.sigma_0(), guan.sigma_z())
def sigma_x0():
return np.kron(guan.sigma_x(), guan.sigma_0())
def sigma_xx():
return np.kron(guan.sigma_x(), guan.sigma_x())
def sigma_xy():
return np.kron(guan.sigma_x(), guan.sigma_y())
def sigma_xz():
return np.kron(guan.sigma_x(), guan.sigma_z())
def sigma_y0():
return np.kron(guan.sigma_y(), guan.sigma_0())
def sigma_yx():
return np.kron(guan.sigma_y(), guan.sigma_x())
def sigma_yy():
return np.kron(guan.sigma_y(), guan.sigma_y())
def sigma_yz():
return np.kron(guan.sigma_y(), guan.sigma_z())
def sigma_z0():
return np.kron(guan.sigma_z(), guan.sigma_0())
def sigma_zx():
return np.kron(guan.sigma_z(), guan.sigma_x())
def sigma_zy():
return np.kron(guan.sigma_z(), guan.sigma_y())
def sigma_zz():
return np.kron(guan.sigma_z(), guan.sigma_z())
# Module 2: Fourier_transform
# Fourier transform for discrete lattices
def one_dimensional_fourier_transform(k, unit_cell, hopping):
unit_cell = np.array(unit_cell)
hopping = np.array(hopping)
hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k)
return hamiltonian
def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2):
unit_cell = np.array(unit_cell)
hopping_1 = np.array(hopping_1)
hopping_2 = np.array(hopping_2)
hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)
return hamiltonian
def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3):
unit_cell = np.array(unit_cell)
hopping_1 = np.array(hopping_1)
hopping_2 = np.array(hopping_2)
hopping_3 = np.array(hopping_3)
hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3)
return hamiltonian
def one_dimensional_fourier_transform_with_k(unit_cell, hopping):
import functools
hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping)
return hamiltonian_function
def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2):
import functools
hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2)
return hamiltonian_function
def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3):
import functools
hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3)
return hamiltonian_function
## calculate reciprocal lattice vectors
def calculate_one_dimensional_reciprocal_lattice_vector(a1):
b1 = 2*np.pi/a1
return b1
def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2):
a1 = np.array(a1)
a2 = np.array(a2)
a1 = np.append(a1, 0)
a2 = np.append(a2, 0)
a3 = np.array([0, 0, 1])
b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
b1 = np.delete(b1, 2)
b2 = np.delete(b2, 2)
return b1, b2
def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3):
a1 = np.array(a1)
a2 = np.array(a2)
a3 = np.array(a3)
b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3))
return b1, b2, b3
def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1):
import sympy
b1 = 2*sympy.pi/a1
return b1
def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2):
import sympy
a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0])
a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0])
a3 = sympy.Matrix(1, 3, [0, 0, 1])
cross_a2_a3 = a2.cross(a3)
cross_a3_a1 = a3.cross(a1)
b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
b1 = sympy.Matrix(1, 2, [b1[0], b1[1]])
b2 = sympy.Matrix(1, 2, [b2[0], b2[1]])
return b1, b2
def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3):
import sympy
cross_a2_a3 = a2.cross(a3)
cross_a3_a1 = a3.cross(a1)
cross_a1_a2 = a1.cross(a2)
b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3)
return b1, b2, b3
# Module 3: Hamiltonian of finite size systems
def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0):
on_site = np.array(on_site)
hopping = np.array(hopping)
if on_site.shape==():
dim = 1
else:
dim = on_site.shape[0]
hamiltonian = np.zeros((N*dim, N*dim), dtype=complex)
for i0 in range(N):
hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site
for i0 in range(N-1):
hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping
hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj()
if period == 1:
hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
return hamiltonian
def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
on_site = np.array(on_site)
hopping_1 = np.array(hopping_1)
hopping_2 = np.array(hopping_2)
if on_site.shape==():
dim = 1
else:
dim = on_site.shape[0]
hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)
for i1 in range(N1):
for i2 in range(N2):
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site
for i1 in range(N1-1):
for i2 in range(N2):
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1
hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
for i1 in range(N1):
for i2 in range(N2-1):
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2
hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj()
if period_1 == 1:
for i2 in range(N2):
hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1
hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
if period_2 == 1:
for i1 in range(N1):
hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
return hamiltonian
def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
on_site = np.array(on_site)
hopping_1 = np.array(hopping_1)
hopping_2 = np.array(hopping_2)
hopping_3 = np.array(hopping_3)
if on_site.shape==():
dim = 1
else:
dim = on_site.shape[0]
hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)
for i1 in range(N1):
for i2 in range(N2):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site
for i1 in range(N1-1):
for i2 in range(N2):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1
hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
for i1 in range(N1):
for i2 in range(N2-1):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2
hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
for i1 in range(N1):
for i2 in range(N2):
for i3 in range(N3-1):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj()
if period_1 == 1:
for i2 in range(N2):
for i3 in range(N3):
hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1
hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
if period_2 == 1:
for i1 in range(N1):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2
hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
if period_3 == 1:
for i1 in range(N1):
for i2 in range(N2):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
return hamiltonian
def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1):
hamiltonian = np.zeros((2*N, 2*N))
for i in range(N):
hamiltonian[i*2+0, i*2+0] = onsite_1
hamiltonian[i*2+1, i*2+1] = onsite_2
hamiltonian[i*2+0, i*2+1] = v
hamiltonian[i*2+1, i*2+0] = v
for i in range(N-1):
hamiltonian[i*2+1, (i+1)*2+0] = w
hamiltonian[(i+1)*2+0, i*2+1] = w
if period==1:
hamiltonian[0, 2*N-1] = w
hamiltonian[2*N-1, 0] = w
return hamiltonian
def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
hopping = np.zeros((4*N, 4*N), dtype=complex)
for i0 in range(N):
hopping[4*i0+0, 4*i0+0] = eta
hopping[4*i0+1, 4*i0+1] = eta
hopping[4*i0+2, 4*i0+2] = eta
hopping[4*i0+3, 4*i0+3] = eta
hopping[4*i0+1, 4*i0+0] = 1
hopping[4*i0+2, 4*i0+3] = 1
return hopping
def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1)
hopping_2 = np.zeros((4, 4), dtype=complex)
hopping_2[3, 0] = 1
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
return hamiltonian
def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
constant = -np.sqrt(3)/2
h00 = np.zeros((2, 2), dtype=complex)
h00[0, 0] = staggered_potential
h00[1, 1] = -staggered_potential
h00[0, 1] = -1j*constant*t*np.sin(qy)
h00[1, 0] = 1j*constant*t*np.sin(qy)
h01 = np.zeros((2, 2), dtype=complex)
h01[0, 0] = eta
h01[1, 1] = eta
if valley_index == 0:
h01[0, 1] = constant*t*(-1j/2)
h01[1, 0] = constant*t*(-1j/2)
else:
h01[0, 1] = constant*t*(1j/2)
h01[1, 0] = constant*t*(1j/2)
return h00, h01
def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
E_s = C+M-4*(D+B)/(a**2)
E_p = C-M-4*(D-B)/(a**2)
V_ss = (D+B)/(a**2)
V_pp = (D-B)/(a**2)
V_sp = -1j*A/(2*a)
H0 = np.zeros((4, 4), dtype=complex)
H1 = np.zeros((4, 4), dtype=complex)
H2 = np.zeros((4, 4), dtype=complex)
H0[0, 0] = E_s
H0[1, 1] = E_p
H0[2, 2] = E_s
H0[3, 3] = E_p
H1[0, 0] = V_ss
H1[1, 1] = V_pp
H1[2, 2] = V_ss
H1[3, 3] = V_pp
H1[0, 1] = V_sp
H1[1, 0] = -np.conj(V_sp)
H1[2, 3] = np.conj(V_sp)
H1[3, 2] = -V_sp
H2[0, 0] = V_ss
H2[1, 1] = V_pp
H2[2, 2] = V_ss
H2[3, 3] = V_pp
H2[0, 1] = 1j*V_sp
H2[1, 0] = 1j*np.conj(V_sp)
H2[2, 3] = -1j*np.conj(V_sp)
H2[3, 2] = -1j*V_sp
return H0, H1, H2
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
E_s = C+M-4*(D+B)/(a**2)
E_p = C-M-4*(D-B)/(a**2)
V_ss = (D+B)/(a**2)
V_pp = (D-B)/(a**2)
V_sp = -1j*A/(2*a)
H0 = np.zeros((2, 2), dtype=complex)
H1 = np.zeros((2, 2), dtype=complex)
H2 = np.zeros((2, 2), dtype=complex)
H0[0, 0] = E_s
H0[1, 1] = E_p
H1[0, 0] = V_ss
H1[1, 1] = V_pp
H1[0, 1] = V_sp
H1[1, 0] = -np.conj(V_sp)
H2[0, 0] = V_ss
H2[1, 1] = V_pp
H2[0, 1] = 1j*V_sp
H2[1, 0] = 1j*np.conj(V_sp)
return H0, H1, H2
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
E_s = C+M-4*(D+B)/(a**2)
E_p = C-M-4*(D-B)/(a**2)
V_ss = (D+B)/(a**2)
V_pp = (D-B)/(a**2)
V_sp = -1j*A/(2*a)
H0 = np.zeros((2, 2), dtype=complex)
H1 = np.zeros((2, 2), dtype=complex)
H2 = np.zeros((2, 2), dtype=complex)
H0[0, 0] = E_s
H0[1, 1] = E_p
H1[0, 0] = V_ss
H1[1, 1] = V_pp
H1[0, 1] = np.conj(V_sp)
H1[1, 0] = -V_sp
H2[0, 0] = V_ss
H2[1, 1] = V_pp
H2[0, 1] = -1j*np.conj(V_sp)
H2[1, 0] = -1j*V_sp
return H0, H1, H2
# Module 4: Hamiltonian of models in the reciprocal space
def hamiltonian_of_simple_chain(k):
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
return hamiltonian
def hamiltonian_of_square_lattice(k1, k2):
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
return hamiltonian
def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
for i in range(N-1):
h00[i, i+1] = 1
h00[i+1, i] = 1
if period == 1:
h00[N-1, 0] = 1
h00[0, N-1] = 1
for i in range(N):
h01[i, i] = 1
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
return hamiltonian
def hamiltonian_of_cubic_lattice(k1, k2, k3):
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
return hamiltonian
def hamiltonian_of_ssh_model(k, v=0.6, w=1):
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
hamiltonian[1,0] = v+w*cmath.exp(1j*k)
return hamiltonian
def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a=1/math.sqrt(3)):
h0 = np.zeros((2, 2), dtype=complex) # mass term
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
h0[0, 0] = staggered_potential
h0[1, 1] = -staggered_potential
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
h1[0, 1] = h1[1, 0].conj()
hamiltonian = h0 + h1
return hamiltonian
def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0, 0] = staggered_potential
hamiltonian[1, 1] = -staggered_potential
constant = -np.sqrt(3)/2
if valley_index == 0:
hamiltonian[0, 1] = constant*t*(qx-1j*qy)
hamiltonian[1, 0] = constant*t*(qx+1j*qy)
else:
hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
return hamiltonian
def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0, 0] = staggered_potential
hamiltonian[1, 1] = -staggered_potential
constant = -np.sqrt(3)/2
if valley_index == 0:
hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy))
hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy))
else:
hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
return hamiltonian
def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
for i in range(N):
h00[i*4+0, i*4+0] = M
h00[i*4+1, i*4+1] = -M
h00[i*4+2, i*4+2] = M
h00[i*4+3, i*4+3] = -M
h00[i*4+0, i*4+1] = t
h00[i*4+1, i*4+0] = t
h00[i*4+1, i*4+2] = t
h00[i*4+2, i*4+1] = t
h00[i*4+2, i*4+3] = t
h00[i*4+3, i*4+2] = t
for i in range(N-1):
h00[i*4+3, (i+1)*4+0] = t
h00[(i+1)*4+0, i*4+3] = t
if period == 1:
h00[(N-1)*4+3, 0] = t
h00[0, (N-1)*4+3] = t
for i in range(N):
h01[i*4+1, i*4+0] = t
h01[i*4+2, i*4+3] = t
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
return hamiltonian
def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=math.pi/4, a=1/math.sqrt(3)):
h0 = np.zeros((2, 2), dtype=complex) # mass term
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
h0[0, 0] = M
h0[1, 1] = -M
h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
h1[0, 1] = h1[1, 0].conj()
h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
return hamiltonian
def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4, period=0):
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
for i in range(N):
h00[i*4+0, i*4+0] = M
h00[i*4+1, i*4+1] = -M
h00[i*4+2, i*4+2] = M
h00[i*4+3, i*4+3] = -M
h00[i*4+0, i*4+1] = t1
h00[i*4+1, i*4+0] = t1
h00[i*4+1, i*4+2] = t1
h00[i*4+2, i*4+1] = t1
h00[i*4+2, i*4+3] = t1
h00[i*4+3, i*4+2] = t1
h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
for i in range(N-1):
h00[i*4+3, (i+1)*4+0] = t1
h00[(i+1)*4+0, i*4+3] = t1
h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
if period == 1:
h00[(N-1)*4+3, 0] = t1
h00[0, (N-1)*4+3] = t1
h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi)
h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj()
h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi)
h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj()
for i in range(N):
h01[i*4+1, i*4+0] = t1
h01[i*4+2, i*4+3] = t1
h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
if i != 0:
h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
for i in range(N-1):
h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
return hamiltonian
def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2)
hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
return hamiltonian
def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
hamiltonian = np.zeros((4, 4), dtype=complex)
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
hamiltonian[0, 0] = varepsilon+d3
hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = np.conj(d1_d2)
hamiltonian[1, 0] = d1_d2
hamiltonian[2, 2] = varepsilon+d3
hamiltonian[3, 3] = varepsilon-d3
hamiltonian[2, 3] = -d1_d2
hamiltonian[3, 2] = -np.conj(d1_d2)
return hamiltonian
def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
hamiltonian = np.zeros((2, 2), dtype=complex)
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
hamiltonian[0, 0] = varepsilon+d3
hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = np.conj(d1_d2)
hamiltonian[1, 0] = d1_d2
return hamiltonian
def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
hamiltonian = np.zeros((2, 2), dtype=complex)
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
hamiltonian[0, 0] = varepsilon+d3
hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = -d1_d2
hamiltonian[1, 0] = -np.conj(d1_d2)
return hamiltonian
def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
# label of atoms in a unit cell
# (2) —— (0)
# | |
# (1) —— (3)
hamiltonian = np.zeros((4, 4), dtype=complex)
hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
hamiltonian[2, 0] = np.conj(hamiltonian[0, 2])
hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
return hamiltonian
def hamiltonian_of_kagome_lattice(kx, ky, t=1):
k1_dot_a1 = kx
k2_dot_a2 = kx/2+ky*math.sqrt(3)/2
k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2
hamiltonian = np.zeros((3, 3), dtype=complex)
hamiltonian[0, 1] = 2*math.cos(k1_dot_a1)
hamiltonian[0, 2] = 2*math.cos(k2_dot_a2)
hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
hamiltonian = hamiltonian + hamiltonian.transpose().conj()
hamiltonian = -t*hamiltonian
return hamiltonian
# Module 5: band structures and wave functions
## band structures
def calculate_eigenvalue(hamiltonian):
if np.array(hamiltonian).shape==():
eigenvalue = np.real(hamiltonian)
else:
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
return eigenvalue
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
dim_x = np.array(x_array).shape[0]
i0 = 0
if np.array(hamiltonian_function(0)).shape==():
eigenvalue_array = np.zeros((dim_x, 1))
for x0 in x_array:
hamiltonian = hamiltonian_function(x0)
eigenvalue_array[i0, 0] = np.real(hamiltonian)
i0 += 1
else:
dim = np.array(hamiltonian_function(0)).shape[0]
eigenvalue_array = np.zeros((dim_x, dim))
for x0 in x_array:
if print_show==1:
print(x0)
hamiltonian = hamiltonian_function(x0)
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
eigenvalue_array[i0, :] = eigenvalue
i0 += 1
return eigenvalue_array
def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):
dim_x = np.array(x_array).shape[0]
dim_y = np.array(y_array).shape[0]
if np.array(hamiltonian_function(0,0)).shape==():
eigenvalue_array = np.zeros((dim_y, dim_x, 1))
i0 = 0
for y0 in y_array:
j0 = 0
for x0 in x_array:
hamiltonian = hamiltonian_function(x0, y0)
eigenvalue_array[i0, j0, 0] = np.real(hamiltonian)
j0 += 1
i0 += 1
else:
dim = np.array(hamiltonian_function(0, 0)).shape[0]
eigenvalue_array = np.zeros((dim_y, dim_x, dim))
i0 = 0
for y0 in y_array:
j0 = 0
if print_show==1:
print(y0)
for x0 in x_array:
if print_show_more==1:
print(x0)
hamiltonian = hamiltonian_function(x0, y0)
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
eigenvalue_array[i0, j0, :] = eigenvalue
j0 += 1
i0 += 1
return eigenvalue_array
## wave functions
def calculate_eigenvector(hamiltonian):
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
return eigenvector
## find vector with the same gauge
def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6):
phase_1_pre = 0
phase_2_pre = np.pi
for i0 in range(n_test):
test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref))
test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref))
if test_1 < precision:
phase = phase_1_pre
if show_times==1:
print('Binary search times=', i0)
break
if i0 == n_test-1:
phase = phase_1_pre
if show_error==1:
print('Gauge not found with binary search times=', i0)
if test_1 < test_2:
if i0 == 0:
phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
else:
phase_1 = phase_1_pre
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
else:
if i0 == 0:
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2
else:
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
phase_2 = phase_2_pre
phase_1_pre = phase_1
phase_2_pre = phase_2
vector_target = vector_target*cmath.exp(1j*phase)
if show_phase==1:
print('Phase=', phase)
return vector_target
def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None):
vector = np.array(vector)
if index == None:
index = np.argmax(np.abs(vector))
sign_pre = np.sign(np.imag(vector[index]))
for phase in np.arange(0, 2*np.pi, precision):
sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase)))
if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre:
break
sign_pre = sign
vector = vector*cmath.exp(1j*phase)
if np.real(vector[index]) < 0:
vector = -vector
return vector
def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005):
vector_sum = 0
Num_k = np.array(vector_array).shape[0]
for i0 in range(Num_k):
vector_sum += np.abs(vector_array[i0])
index = np.argmax(np.abs(vector_sum))
for i0 in range(Num_k):
vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index)
return vector_array
def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0):
vector1 = np.array(vector1)
vector2 = np.array(vector2)
if index1 == None:
index1 = np.argmax(np.abs(vector1))
if index2 == None:
index2 = np.argmax(np.abs(vector2))
if np.abs(vector1[index2])>criterion or np.abs(vector2[index1])>criterion:
for theta in np.arange(0, 2*math.pi, precision):
if show_theta==1:
print(theta)
for phi1 in np.arange(0, 2*math.pi, precision):
for phi2 in np.arange(0, 2*math.pi, precision):
vector1_test = cmath.exp(1j*phi1)*vector1*math.cos(theta)+cmath.exp(1j*phi2)*vector2*math.sin(theta)
vector2_test = -cmath.exp(-1j*phi2)*vector1*math.sin(theta)+cmath.exp(-1j*phi1)*vector2*math.cos(theta)
if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion:
vector1 = vector1_test
vector2 = vector2_test
break
if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion:
break
if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion:
break
return vector1, vector2
def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0):
Num_k = np.array(vector1_array).shape[0]
vector1_sum = 0
for i0 in range(Num_k):
vector1_sum += np.abs(vector1_array[i0])
index1 = np.argmax(np.abs(vector1_sum))
vector2_sum = 0
for i0 in range(Num_k):
vector2_sum += np.abs(vector2_array[i0])
index2 = np.argmax(np.abs(vector2_sum))
for i0 in range(Num_k):
vector1_array[i0], vector2_array[i0] = guan.rotation_of_degenerate_vectors(vector1=vector1_array[i0], vector2=vector2_array[i0], index1=index1, index2=index2, precision=precision, criterion=criterion, show_theta=show_theta)
return vector1_array, vector2_array
# Module 6: Green functions
def green_function(fermi_energy, hamiltonian, broadening, self_energy=0):
if np.array(hamiltonian).shape==():
dim = 1
else:
dim = np.array(hamiltonian).shape[0]
green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy)
return green
def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0):
h01 = np.array(h01)
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy)
return green_nn_n
def green_function_in_n(green_in_n_minus, h01, green_nn_n):
green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n)
return green_in_n
def green_function_ni_n(green_nn_n, h01, green_ni_n_minus):
h01 = np.array(h01)
green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus)
return green_ni_n
def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus):
green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus)
return green_ii_n
def transfer_matrix(fermi_energy, h00, h01):
h01 = np.array(h01)
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
transfer = np.zeros((2*dim, 2*dim), dtype=complex)
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
transfer[dim:2*dim, 0:dim] = np.identity(dim)
transfer[dim:2*dim, dim:2*dim] = 0
return transfer
def surface_green_function_of_lead(fermi_energy, h00, h01):
h01 = np.array(h01)
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
fermi_energy = fermi_energy+1e-9*1j
transfer = transfer_matrix(fermi_energy, h00, h01)
eigenvalue, eigenvector = np.linalg.eig(transfer)
ind = np.argsort(np.abs(eigenvalue))
temp = np.zeros((2*dim, 2*dim), dtype=complex)
i0 = 0
for ind0 in ind:
temp[:, i0] = eigenvector[:, ind0]
i0 += 1
s1 = temp[dim:2*dim, 0:dim]
s2 = temp[0:dim, 0:dim]
s3 = temp[dim:2*dim, dim:2*dim]
s4 = temp[0:dim, dim:2*dim]
right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
return right_lead_surface, left_lead_surface
def self_energy_of_lead(fermi_energy, h00, h01):
h01 = np.array(h01)
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj())
left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
return right_self_energy, left_self_energy, gamma_right, gamma_left
def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR):
h_LC = np.array(h_LC)
h_CR = np.array(h_CR)
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj())
left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC)
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
return right_self_energy, left_self_energy, gamma_right, gamma_left
def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center):
h_lead_to_center = np.array(h_lead_to_center)
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center)
gamma = (self_energy - self_energy.transpose().conj())*1j
return self_energy, gamma
def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
dim = np.array(center_hamiltonian).shape[0]
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy)
return green, gamma_right, gamma_left
def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy)
G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj()))
return G_n
# Module 7: density of states
def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01):
green = guan.green_function(fermi_energy, hamiltonian, broadening)
total_dos = -np.trace(np.imag(green))/math.pi
return total_dos
def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0):
dim = np.array(fermi_energy_array).shape[0]
total_dos_array = np.zeros(dim)
i0 = 0
for fermi_energy in fermi_energy_array:
if print_show == 1:
print(fermi_energy)
total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening)
i0 += 1
return total_dos_array
def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01):
# dim_hamiltonian = N1*N2*internal_degree
green = guan.green_function(fermi_energy, hamiltonian, broadening)
local_dos = np.zeros((N2, N1))
for i1 in range(N1):
for i2 in range(N2):
for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/math.pi
return local_dos
def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01):
# dim_hamiltonian = N1*N2*N3*internal_degree
green = guan.green_function(fermi_energy, hamiltonian, broadening)
local_dos = np.zeros((N3, N2, N1))
for i1 in range(N1):
for i2 in range(N2):
for i3 in range(N3):
for i in range(internal_degree):
local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/math.pi
return local_dos
def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01):
# dim_h00 = N2*internal_degree
local_dos = np.zeros((N2, N1))
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
for i1 in range(N1):
green_nn_n_minus = green_11_1
green_in_n_minus = green_11_1
green_ni_n_minus = green_11_1
green_ii_n_minus = green_11_1
for i2_0 in range(i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
if i1!=0:
green_in_n_minus = green_nn_n
green_ni_n_minus = green_nn_n
green_ii_n_minus = green_nn_n
for size_0 in range(N1-1-i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
green_ii_n_minus = green_ii_n
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
green_in_n_minus = green_in_n
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
green_ni_n_minus = green_ni_n
for i2 in range(N2):
for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
return local_dos
def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01):
# dim_h00 = N2*N3*internal_degree
local_dos = np.zeros((N3, N2, N1))
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
for i1 in range(N1):
green_nn_n_minus = green_11_1
green_in_n_minus = green_11_1
green_ni_n_minus = green_11_1
green_ii_n_minus = green_11_1
for i1_0 in range(i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
if i1!=0:
green_in_n_minus = green_nn_n
green_ni_n_minus = green_nn_n
green_ii_n_minus = green_nn_n
for size_0 in range(N1-1-i1):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
green_ii_n_minus = green_ii_n
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
green_in_n_minus = green_in_n
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
green_ni_n_minus = green_ni_n
for i2 in range(N2):
for i3 in range(N3):
for i in range(internal_degree):
local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi
return local_dos
def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01):
# dim_h00 = N2*internal_degree
local_dos = np.zeros((N2, N1))
green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening)
for i1 in range(N1):
green_nn_n_minus = green_11_1
green_in_n_minus = green_11_1
green_ni_n_minus = green_11_1
green_ii_n_minus = green_11_1
for i2_0 in range(i1):
if i2_0 == N1-1-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
if i1!=0:
green_in_n_minus = green_nn_n
green_ni_n_minus = green_nn_n
green_ii_n_minus = green_nn_n
for size_0 in range(N1-1-i1):
if size_0 == N1-1-i1-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
green_nn_n_minus = green_nn_n
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
green_ii_n_minus = green_ii_n
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
green_in_n_minus = green_in_n
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
green_ni_n_minus = green_ni_n
for i2 in range(N2):
for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
return local_dos
# Module 8: quantum transport
## conductance
def calculate_conductance(fermi_energy, h00, h01, length=100):
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
for ix in range(length):
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif ix != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0):
dim = np.array(fermi_energy_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for fermi_energy in fermi_energy_array:
if print_show == 1:
print(fermi_energy)
conductance_array[i0] = np.real(guan.calculate_conductance(fermi_energy, h00, h01, length))
i0 += 1
return conductance_array
def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1):
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
dim = np.array(h00).shape[0]
for ix in range(length):
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif int(length/2-barrier_length/2)<=ix<int(length/2+barrier_length/2):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+barrier_potential*np.identity(dim), h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
elif ix != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
dim = np.array(h00).shape[0]
for ix in range(length):
disorder = np.zeros((dim, dim))
for dim0 in range(dim):
if np.random.uniform(0, 1)<=disorder_concentration:
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
if ix == 0:
green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy)
green_0n_n = copy.deepcopy(green_nn_n)
elif ix != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
return conductance
def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0):
dim = np.array(disorder_intensity_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for disorder_intensity in disorder_intensity_array:
if print_show == 1:
print(disorder_intensity)
for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
i0 += 1
conductance_array = conductance_array/calculation_times
return conductance_array
def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0):
dim = np.array(disorder_concentration_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for disorder_concentration in disorder_concentration_array:
if print_show == 1:
print(disorder_concentration)
for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
i0 += 1
conductance_array = conductance_array/calculation_times
return conductance_array
def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0):
dim = np.array(length_array).shape[0]
conductance_array = np.zeros(dim)
i0 = 0
for length in length_array:
if print_show == 1:
print(length)
for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
i0 += 1
conductance_array = conductance_array/calculation_times
return conductance_array
## multi-terminal transmission
def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
# ---------------- Geometry ----------------
# lead2 lead3
# lead1(L) lead4(R)
# lead6 lead5
# h00 and h01 in leads
h00_for_lead_1 = h00_for_lead_4
h00_for_lead_2 = h00_for_lead_2
h00_for_lead_3 = h00_for_lead_2
h00_for_lead_5 = h00_for_lead_2
h00_for_lead_6 = h00_for_lead_2
h00_for_lead_4 = h00_for_lead_4
h01_for_lead_1 = h01_for_lead_4.transpose().conj()
h01_for_lead_2 = h01_for_lead_2
h01_for_lead_3 = h01_for_lead_2
h01_for_lead_4 = h01_for_lead_4
h01_for_lead_5 = h01_for_lead_2.transpose().conj()
h01_for_lead_6 = h01_for_lead_2.transpose().conj()
# hopping matrix from lead to center
h_lead1_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead2_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead3_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead4_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead5_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
h_lead6_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
move = moving_step_of_leads # the step of leads 2,3,6,5 moving to center
h_lead1_to_center[0:internal_degree*width, 0:internal_degree*width] = h01_for_lead_1.transpose().conj()
h_lead4_to_center[0:internal_degree*width, internal_degree*width*(length-1):internal_degree*width*length] = h01_for_lead_4.transpose().conj()
for i0 in range(width):
begin_index = internal_degree*i0+0
end_index = internal_degree*i0+internal_degree
h_lead2_to_center[begin_index:end_index, internal_degree*(width*(move+i0)+(width-1))+0:internal_degree*(width*(move+i0)+(width-1))+internal_degree] = h01_for_lead_2.transpose().conj()[begin_index:end_index, begin_index:end_index]
h_lead3_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+(width-1))+0:internal_degree*(width*(length-move-1-i0)+(width-1))+internal_degree] = h01_for_lead_3.transpose().conj()[begin_index:end_index, begin_index:end_index]
h_lead5_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+0)+0:internal_degree*(width*(length-move-1-i0)+0)+internal_degree] = h01_for_lead_5.transpose().conj()[begin_index:end_index, begin_index:end_index]
h_lead6_to_center[begin_index:end_index, internal_degree*(width*(i0+move)+0)+0:internal_degree*(width*(i0+move)+0)+internal_degree] = h01_for_lead_6.transpose().conj()[begin_index:end_index, begin_index:end_index]
# self energy
self_energy1, gamma1 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_1, h01_for_lead_1, h_lead1_to_center)
self_energy2, gamma2 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_2, h01_for_lead_1, h_lead2_to_center)
self_energy3, gamma3 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_3, h01_for_lead_1, h_lead3_to_center)
self_energy4, gamma4 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_4, h01_for_lead_1, h_lead4_to_center)
self_energy5, gamma5 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_5, h01_for_lead_1, h_lead5_to_center)
self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center)
gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6]
# Green function
green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6)
return gamma_array, green
def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width, length, internal_degree, moving_step_of_leads)
# Transmission
transmission_matrix = np.zeros((6, 6), dtype=complex)
channel_lead_4 = guan.calculate_conductance(fermi_energy, h00_for_lead_4, h01_for_lead_4, length=3)
channel_lead_2 = guan.calculate_conductance(fermi_energy, h00_for_lead_2, h01_for_lead_2, length=3)
for i0 in range(6):
for j0 in range(6):
if j0!=i0:
transmission_matrix[i0, j0] = np.trace(np.dot(np.dot(np.dot(gamma_array[i0], green), gamma_array[j0]), green.transpose().conj()))
for i0 in range(6):
if i0 == 0 or i0 == 3:
transmission_matrix[i0, i0] = channel_lead_4
else:
transmission_matrix[i0, i0] = channel_lead_2
for i0 in range(6):
for j0 in range(6):
if j0!=i0:
transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0]
transmission_matrix = np.real(transmission_matrix)
return transmission_matrix
def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width, length, internal_degree, moving_step_of_leads)
# Transmission
transmission_12 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[1]), green.transpose().conj())))
transmission_13 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[2]), green.transpose().conj())))
transmission_14 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[3]), green.transpose().conj())))
transmission_15 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[4]), green.transpose().conj())))
transmission_16 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[5]), green.transpose().conj())))
return transmission_12, transmission_13, transmission_14, transmission_15, transmission_16
## scattering matrix
def if_active_channel(k_of_channel):
if np.abs(np.imag(k_of_channel))<1e-6:
if_active = 1
else:
if_active = 0
return if_active
def get_k_and_velocity_of_channel(fermi_energy, h00, h01):
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
eigenvalue, eigenvector = np.linalg.eig(transfer)
k_of_channel = np.log(eigenvalue)/1j
ind = np.argsort(np.real(k_of_channel))
k_of_channel = np.sort(k_of_channel)
temp = np.zeros((2*dim, 2*dim), dtype=complex)
temp2 = np.zeros((2*dim), dtype=complex)
i0 = 0
for ind0 in ind:
temp[:, i0] = eigenvector[:, ind0]
temp2[i0] = eigenvalue[ind0]
i0 += 1
eigenvalue = copy.deepcopy(temp2)
temp = temp[0:dim, :]
factor = np.zeros(2*dim)
for dim0 in range(dim):
factor = factor+np.square(np.abs(temp[dim0, :]))
for dim0 in range(2*dim):
temp[:, dim0] = temp[:, dim0]/math.sqrt(factor[dim0])
velocity_of_channel = np.zeros((2*dim), dtype=complex)
for dim0 in range(2*dim):
velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0]
velocity_of_channel = -2*np.imag(velocity_of_channel)
eigenvector = copy.deepcopy(temp)
return k_of_channel, velocity_of_channel, eigenvalue, eigenvector
def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01):
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
k_of_channel, velocity_of_channel, eigenvalue, eigenvector = guan.get_k_and_velocity_of_channel(fermi_energy, h00, h01)
ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0
k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex)
velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex)
lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex)
u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex)
for dim0 in range(2*dim):
if_active = guan.if_active_channel(k_of_channel[dim0])
if guan.if_active_channel(k_of_channel[dim0]) == 1:
direction = np.sign(velocity_of_channel[dim0])
else:
direction = np.sign(np.imag(k_of_channel[dim0]))
if direction == 1:
if if_active == 1: # right-moving active channel
k_right[ind_right_active] = k_of_channel[dim0]
velocity_right[ind_right_active] = velocity_of_channel[dim0]
lambda_right[ind_right_active] = eigenvalue[dim0]
u_right[:, ind_right_active] = eigenvector[:, dim0]
ind_right_active += 1
else: # right-moving evanescent channel
k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0]
velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0]
lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0]
u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0]
ind_right_evanescent += 1
else:
if if_active == 1: # left-moving active channel
k_left[ind_left_active] = k_of_channel[dim0]
velocity_left[ind_left_active] = velocity_of_channel[dim0]
lambda_left[ind_left_active] = eigenvalue[dim0]
u_left[:, ind_left_active] = eigenvector[:, dim0]
ind_left_active += 1
else: # left-moving evanescent channel
k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0]
velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0]
lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0]
u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0]
ind_left_evanescent += 1
lambda_matrix_right = np.diag(lambda_right)
lambda_matrix_left = np.diag(lambda_left)
f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right))
f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left))
return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active
def calculate_scattering_matrix(fermi_energy, h00, h01, length=100):
h01 = np.array(h01)
if np.array(h00).shape==():
dim = 1
else:
dim = np.array(h00).shape[0]
k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01)
right_self_energy = np.dot(h01, f_right)
left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left))
for i0 in range(length):
if i0 == 0:
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
green_00_n = copy.deepcopy(green_nn_n)
green_0n_n = copy.deepcopy(green_nn_n)
green_n0_n = copy.deepcopy(green_nn_n)
elif i0 != length-1:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
else:
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n)
temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left))
transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)
reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right)
for dim0 in range(dim):
for dim1 in range(dim):
if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1])
if if_active == 1:
transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1]
reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1]
else:
transmission_matrix[dim0, dim1] = 0
reflection_matrix[dim0, dim1] = 0
sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
for sum_of_tran_refl in sum_of_tran_refl_array:
if sum_of_tran_refl > 1.001:
print('Error Alert: scattering matrix is not normalized!')
return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active):
if np.array(transmission_matrix).shape==():
dim = 1
else:
dim = np.array(transmission_matrix).shape[0]
number_of_active_channels = ind_right_active
number_of_evanescent_channels = dim-ind_right_active
k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active])
k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active])
velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active])
velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active])
transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))
reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active]))
total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])))
total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt'):
number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(fermi_energy, h00, h01, length)
if print_show == 1:
print('\nActive channel (left or right) = ', number_of_active_channels)
print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n')
print('K of right-moving active channels:\n', k_of_right_moving_active_channels)
print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n')
print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels)
print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n')
print('Transmission matrix:\n', transmission_matrix_for_active_channels)
print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n')
print('Total transmission of channels:\n', total_transmission_of_channels)
print('Total conductance = ', total_conductance, '\n')
print('Total reflection of channels:\n', total_reflection_of_channels)
print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n')
if write_file == 1:
with open(filename+'.'+format, 'w') as f:
f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n')
f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n')
f.write('Channel K Velocity\n')
for ind0 in range(number_of_active_channels):
f.write(' '+str(ind0 + 1) + ' | '+str(k_of_right_moving_active_channels[ind0])+' ' + str(velocity_of_right_moving_active_channels[ind0])+'\n')
f.write('\n')
for ind0 in range(number_of_active_channels):
f.write(' -' + str(ind0 + 1) + ' | ' + str(k_of_left_moving_active_channels[ind0]) + ' ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n')
f.write('\nScattering matrix:\n ')
for ind0 in range(number_of_active_channels):
f.write(str(ind0+1)+' ')
f.write('\n')
for ind1 in range(number_of_active_channels):
f.write(' '+str(ind1+1)+' ')
for ind2 in range(number_of_active_channels):
f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+' ')
f.write('\n')
f.write('\n')
for ind1 in range(number_of_active_channels):
f.write(' -'+str(ind1+1)+' ')
for ind2 in range(number_of_active_channels):
f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+' ')
f.write('\n')
f.write('\n')
f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n')
f.write('Total conductance = '+str(total_conductance)+'\n')
# Module 9: topological invariant
def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0):
if np.array(hamiltonian_function(0, 0)).shape==():
dim = 1
else:
dim = np.array(hamiltonian_function(0, 0)).shape[0]
delta = 2*math.pi/precision
chern_number = np.zeros(dim, dtype=complex)
for kx in np.arange(-math.pi, math.pi, delta):
if print_show == 1:
print(kx)
for ky in np.arange(-math.pi, math.pi, delta):
H = hamiltonian_function(kx, ky)
vector = guan.calculate_eigenvector(H)
H_delta_kx = hamiltonian_function(kx+delta, ky)
vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
H_delta_ky = hamiltonian_function(kx, ky+delta)
vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
for i in range(dim):
vector_i = vector[:, i]
vector_delta_kx_i = vector_delta_kx[:, i]
vector_delta_ky_i = vector_delta_ky[:, i]
vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
chern_number[i] = chern_number[i] + F
chern_number = chern_number/(2*math.pi*1j)
return chern_number
def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0):
delta = 2*math.pi/precision_of_plaquettes
chern_number = 0
for kx in np.arange(-math.pi, math.pi, delta):
if print_show == 1:
print(kx)
for ky in np.arange(-math.pi, math.pi, delta):
vector_array = []
# line_1
for i0 in range(precision_of_Wilson_loop+1):
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_2
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1))
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_3
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_4
for i0 in range(precision_of_Wilson_loop-1):
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1))
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
Wilson_loop = 1
for i0 in range(len(vector_array)-1):
Wilson_loop = Wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
Wilson_loop = Wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
arg = np.log(np.diagonal(Wilson_loop))/1j
chern_number = chern_number + arg
chern_number = chern_number/(2*math.pi)
return chern_number
def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0):
if np.array(hamiltonian_function(0, 0)).shape==():
dim = 1
else:
dim = np.array(hamiltonian_function(0, 0)).shape[0]
chern_number = np.zeros(dim, dtype=complex)
L1 = 4*math.sqrt(3)*math.pi/9/a
L2 = 2*math.sqrt(3)*math.pi/9/a
L3 = 2*math.pi/3/a
delta1 = 2*L1/precision
delta3 = 2*L3/precision
for kx in np.arange(-L1, L1, delta1):
if print_show == 1:
print(kx)
for ky in np.arange(-L3, L3, delta3):
if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*math.tan(math.pi/3)<=ky<=(L1-kx)*math.tan(math.pi/3)) or (kx<-L2 and -(kx-(-L1))*math.tan(math.pi/3)<=ky<=(kx-(-L1))*math.tan(math.pi/3)):
H = hamiltonian_function(kx, ky)
vector = guan.calculate_eigenvector(H)
H_delta_kx = hamiltonian_function(kx+delta1, ky)
vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
H_delta_ky = hamiltonian_function(kx, ky+delta3)
vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3)
vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
for i in range(dim):
vector_i = vector[:, i]
vector_delta_kx_i = vector_delta_kx[:, i]
vector_delta_ky_i = vector_delta_ky[:, i]
vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
chern_number[i] = chern_number[i] + F
chern_number = chern_number/(2*math.pi*1j)
return chern_number
def calculate_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision=100, print_show=0):
k_array = np.linspace(k_min, k_max, precision)
dim = np.array(hamiltonian_function(0)).shape[0]
wilson_loop_array = np.ones(dim, dtype=complex)
for i in range(dim):
if print_show == 1:
print(i)
eigenvector_array = []
for k in k_array:
eigenvector = guan.calculate_eigenvector(hamiltonian_function(k))
if k != k_max:
eigenvector_array.append(eigenvector[:, i])
else:
eigenvector_array.append(eigenvector_array[0])
for i0 in range(precision-1):
F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0])
wilson_loop_array[i] = np.dot(F, wilson_loop_array[i])
return wilson_loop_array
# Module 10: read and write
def read_one_dimensional_data(filename='a', format='txt'):
f = open(filename+'.'+format, 'r')
text = f.read()
f.close()
row_list = np.array(text.split('\n'))
dim_column = np.array(row_list[0].split()).shape[0]
x_array = np.array([])
y_array = np.array([])
for row in row_list:
column = np.array(row.split())
if column.shape[0] != 0:
x_array = np.append(x_array, [float(column[0])], axis=0)
y_row = np.zeros(dim_column-1)
for dim0 in range(dim_column-1):
y_row[dim0] = float(column[dim0+1])
if np.array(y_array).shape[0] == 0:
y_array = [y_row]
else:
y_array = np.append(y_array, [y_row], axis=0)
return x_array, y_array
def read_two_dimensional_data(filename='a', format='txt'):
f = open(filename+'.'+format, 'r')
text = f.read()
f.close()
row_list = np.array(text.split('\n'))
dim_column = np.array(row_list[0].split()).shape[0]
x_array = np.array([])
y_array = np.array([])
matrix = np.array([])
for i0 in range(row_list.shape[0]):
column = np.array(row_list[i0].split())
if i0 == 0:
x_str = column[1::]
x_array = np.zeros(x_str.shape[0])
for i00 in range(x_str.shape[0]):
x_array[i00] = float(x_str[i00])
elif column.shape[0] != 0:
y_array = np.append(y_array, [float(column[0])], axis=0)
matrix_row = np.zeros(dim_column-1)
for dim0 in range(dim_column-1):
matrix_row[dim0] = float(column[dim0+1])
if np.array(matrix).shape[0] == 0:
matrix = [matrix_row]
else:
matrix = np.append(matrix, [matrix_row], axis=0)
return x_array, y_array, matrix
def write_one_dimensional_data(x_array, y_array, filename='a', format='txt'):
x_array = np.array(x_array)
y_array = np.array(y_array)
with open(filename+'.'+format, 'w') as f:
i0 = 0
for x0 in x_array:
f.write(str(x0)+' ')
if len(y_array.shape) == 1:
f.write(str(y_array[i0])+'\n')
elif len(y_array.shape) == 2:
for j0 in range(y_array.shape[1]):
f.write(str(y_array[i0, j0])+' ')
f.write('\n')
i0 += 1
def write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt'):
x_array = np.array(x_array)
y_array = np.array(y_array)
matrix = np.array(matrix)
with open(filename+'.'+format, 'w') as f:
f.write('0 ')
for x0 in x_array:
f.write(str(x0)+' ')
f.write('\n')
i0 = 0
for y0 in y_array:
f.write(str(y0))
j0 = 0
for x0 in x_array:
f.write(' '+str(matrix[i0, j0])+' ')
j0 += 1
f.write('\n')
i0 += 1
def print_array(array, show_index=0, index_type=0):
if show_index==0:
for i0 in array:
print(i0)
else:
if index_type==0:
index = 0
for i0 in array:
print(index, i0)
index += 1
else:
index = 0
for i0 in array:
index += 1
print(index, i0)
# Module 11: plot figures
def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20):
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left)
ax.grid()
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels()
[label.set_fontname('Times New Roman') for label in labels]
return plt, fig, ax
def plot_without_starting_fig(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None):
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y_min=min(y_array)
if y_max==None:
y_max=max(y_array)
ax.set_ylim(y_min, y_max)
def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y_min=min(y_array)
if y_max==None:
y_max=max(y_array)
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y_min=min([y1_min, y2_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y_max=max([y1_max, y2_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y_min=min([y1_min, y2_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y_max=max([y1_max, y2_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y3_min=min(y3_array)
y_min=min([y1_min, y2_min, y3_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y3_max=max(y3_array)
y_max=max([y1_max, y2_max, y3_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
if y_min!=None or y_max!=None:
if y_min==None:
y1_min=min(y1_array)
y2_min=min(y2_array)
y3_min=min(y3_array)
y_min=min([y1_min, y2_min, y3_min])
if y_max==None:
y1_max=max(y1_array)
y2_max=max(y2_array)
y3_max=max(y3_array)
y_max=max([y1_max, y2_max, y3_max])
ax.set_ylim(y_min, y_max)
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator
matrix = np.array(matrix)
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
plt.subplots_adjust(bottom=0.1, right=0.65)
x_array, y_array = np.meshgrid(x_array, y_array)
if len(matrix.shape) == 2:
surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
elif len(matrix.shape) == 3:
for i0 in range(matrix.shape[2]):
surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.zaxis.set_major_locator(LinearLocator(5))
ax.zaxis.set_major_formatter('{x:.2f}')
if z_min!=None or z_max!=None:
if z_min==None:
z_min=matrix.min()
if z_max==None:
z_max=matrix.max()
ax.set_zlim(z_min, z_max)
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()
[label.set_fontname('Times New Roman') for label in labels]
cax = plt.axes([0.8, 0.1, 0.05, 0.8])
cbar = fig.colorbar(surf, cax=cax)
cbar.ax.tick_params(labelsize=labelsize)
for l in cbar.ax.yaxis.get_ticklabels():
l.set_family('Times New Roman')
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300):
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)
x_array, y_array = np.meshgrid(x_array, y_array)
contour = ax.contourf(x_array,y_array,matrix,cmap='jet')
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels()
[label.set_fontname('Times New Roman') for label in labels]
cax = plt.axes([0.8, 0.2, 0.05, 0.68])
cbar = fig.colorbar(contour, cax=cax)
cbar.ax.tick_params(labelsize=labelsize)
for l in cbar.ax.yaxis.get_ticklabels():
l.set_family('Times New Roman')
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
if show == 1:
plt.show()
plt.close('all')
def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', format='eps', dpi=300):
import matplotlib.pyplot as plt
coordinate_array = np.array(coordinate_array)
print(coordinate_array.shape)
x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0])
y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1])
fig, ax = plt.subplots(figsize=(6*x_range/y_range,6))
plt.subplots_adjust(left=0, bottom=0, right=1, top=1)
plt.axis('off')
if draw_lines==1:
for i1 in range(coordinate_array.shape[0]):
for i2 in range(coordinate_array.shape[0]):
if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance:
ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth)
if draw_dots==1:
for i in range(coordinate_array.shape[0]):
ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize)
if show==1:
plt.show()
if save==1:
if format=='eps':
plt.savefig(filename+'.'+format)
else:
plt.savefig(filename+'.'+format, dpi=dpi)
def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', format='jpg', dpi=300):
num = np.array(image_path_array).shape[0]
if num != 2:
print('Error: The number of images should be two!')
else:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig = plt.figure(figsize=figsize)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
image_1 = mpimg.imread(image_path_array[0])
image_2 = mpimg.imread(image_path_array[1])
ax1.imshow(image_1)
ax2.imshow(image_2)
ax1.axis('off')
ax2.axis('off')
if show == 1:
plt.show()
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
plt.close('all')
def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', format='jpg', dpi=300):
num = np.array(image_path_array).shape[0]
if num != 3:
print('Error: The number of images should be three!')
else:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig = plt.figure(figsize=figsize)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
ax1 = fig.add_subplot(131)
ax2 = fig.add_subplot(132)
ax3 = fig.add_subplot(133)
image_1 = mpimg.imread(image_path_array[0])
image_2 = mpimg.imread(image_path_array[1])
image_3 = mpimg.imread(image_path_array[2])
ax1.imshow(image_1)
ax2.imshow(image_2)
ax3.imshow(image_3)
ax1.axis('off')
ax2.axis('off')
ax3.axis('off')
if show == 1:
plt.show()
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
plt.close('all')
def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', format='jpg', dpi=300):
num = np.array(image_path_array).shape[0]
if num != 4:
print('Error: The number of images should be four!')
else:
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig = plt.figure(figsize=figsize)
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
image_1 = mpimg.imread(image_path_array[0])
image_2 = mpimg.imread(image_path_array[1])
image_3 = mpimg.imread(image_path_array[2])
image_4 = mpimg.imread(image_path_array[3])
ax1.imshow(image_1)
ax2.imshow(image_2)
ax3.imshow(image_3)
ax4.imshow(image_4)
ax1.axis('off')
ax2.axis('off')
ax3.axis('off')
ax4.axis('off')
if show == 1:
plt.show()
if save == 1:
plt.savefig(filename+'.'+format, dpi=dpi)
plt.close('all')
def make_gif(image_path_array, filename='a', duration=0.1):
import imageio
images = []
for image_path in image_path_array:
im = imageio.imread(image_path)
images.append(im)
imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration)
# Module 12: data processing
def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0):
num_all = np.array(parameter_array_all).shape[0]
if num_all%cpus == 0:
num_parameter = int(num_all/cpus)
parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter]
else:
num_parameter = int(num_all/(cpus-1))
if task_index != cpus-1:
parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter]
else:
parameter_array = parameter_array_all[task_index*num_parameter:num_all]
return parameter_array
def find_close_values_in_one_array(array, precision=1e-2):
new_array = []
i0 = 0
for a1 in array:
j0 = 0
for a2 in array:
if j0>i0 and abs(a1-a2)<precision:
new_array.append([a1, a2])
j0 +=1
i0 += 1
return new_array
def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2):
degenerate_k_array = []
degenerate_eigenvalue_array = []
i0 = 0
for k in k_array:
degenerate_points = find_close_values_in_one_array(eigenvalue_array[i0], precision=precision)
if len(degenerate_points) != 0:
degenerate_k_array.append(k)
degenerate_eigenvalue_array.append(degenerate_points)
i0 += 1
return degenerate_k_array, degenerate_eigenvalue_array
def change_directory_by_replacement(current_key_word='code', new_key_word='data'):
import os
code_path = os.getcwd()
data_path = code_path.replace('\\', '/')
data_path = data_path.replace(current_key_word, new_key_word)
if os.path.exists(data_path) == False:
os.makedirs(data_path)
os.chdir(data_path)
def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'):
import re
import os
for root, dirs, files in os.walk(directory):
for file in files:
if re.search('^txt.', file[::-1]):
filename = file[:-4]
x_array, y_array = guan.read_one_dimensional_data(filename=filename)
guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename)
def rgb_to_hex(rgb, pound=1):
if pound==0:
return '%02x%02x%02x' % rgb
else:
return '#%02x%02x%02x' % rgb
def hex_to_rgb(hex):
hex = hex.lstrip('#')
length = len(hex)
return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3))
# Module 13: others
## download
def download_with_scihub(address=None, num=1):
from bs4 import BeautifulSoup
import re
import requests
import os
if num==1 and address!=None:
address_array = [address]
else:
address_array = []
for i in range(num):
address = input('\nInput')
address_array.append(address)
for address in address_array:
r = requests.post('https://sci-hub.st/', data={'request': address})
print('\nResponse', r)
print('Address', r.url)
soup = BeautifulSoup(r.text, features='lxml')
pdf_URL = soup.embed['src']
# pdf_URL = soup.iframe['src'] # This is a code line of history version which fails to get pdf URL.
if re.search(re.compile('^https:'), pdf_URL):
pass
else:
pdf_URL = 'https:'+pdf_URL
print('PDF address', pdf_URL)
name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::]
print('PDF name', name)
print('Directory', os.getcwd())
print('\nDownloading...')
r = requests.get(pdf_URL, stream=True)
with open(name, 'wb') as f:
for chunk in r.iter_content(chunk_size=32):
f.write(chunk)
print('Completed!\n')
if num != 1:
print('All completed!\n')
## PDF
def get_links_from_pdf(pdf_path, link_starting_form=''):
# Example: link_starting_form='https://doi.org'
import PyPDF2
import re
pdfReader = PyPDF2.PdfFileReader(pdf_path)
pages = pdfReader.getNumPages()
i0 = 0
links = []
for page in range(pages):
pageSliced = pdfReader.getPage(page)
pageObject = pageSliced.getObject()
if '/Annots' in pageObject.keys():
ann = pageObject['/Annots']
old = ''
for a in ann:
u = a.getObject()
if '/A' in u.keys():
if re.search(re.compile('^'+link_starting_form), u['/A']['/URI']):
if u['/A']['/URI'] != old:
links.append(u['/A']['/URI'])
i0 += 1
old = u['/A']['/URI']
return links
def pdf_to_text(pdf_path):
from pdfminer.pdfparser import PDFParser, PDFDocument
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
from pdfminer.converter import PDFPageAggregator
from pdfminer.layout import LAParams, LTTextBox
from pdfminer.pdfinterp import PDFTextExtractionNotAllowed
import logging
logging.Logger.propagate = False
logging.getLogger().setLevel(logging.ERROR)
praser = PDFParser(open(pdf_path, 'rb'))
doc = PDFDocument()
praser.set_document(doc)
doc.set_parser(praser)
doc.initialize()
if not doc.is_extractable:
raise PDFTextExtractionNotAllowed
else:
rsrcmgr = PDFResourceManager()
laparams = LAParams()
device = PDFPageAggregator(rsrcmgr, laparams=laparams)
interpreter = PDFPageInterpreter(rsrcmgr, device)
content = ''
for page in doc.get_pages():
interpreter.process_page(page)
layout = device.get_result()
for x in layout:
if isinstance(x, LTTextBox):
content = content + x.get_text().strip()
return content
## audio
def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
import pyttsx3
if print_text==1:
print(str)
engine = pyttsx3.init()
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[voice].id)
engine.setProperty("rate", rate)
if save==1:
engine.save_to_file(str, filename+'.wav')
engine.runAndWait()
print('Wav file saved!')
if compress==1:
import os
os.rename(filename+'.wav', 'temp.wav')
guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate)
os.remove('temp.wav')
if read==1:
engine.say(str)
engine.runAndWait()
def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
import pyttsx3
f = open(txt_path, 'r', encoding ='utf-8')
text = f.read()
if print_text==1:
print(text)
engine = pyttsx3.init()
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[voice].id)
engine.setProperty("rate", rate)
if save==1:
import re
filename = re.split('[/,\\\]', txt_path)[-1][:-4]
engine.save_to_file(text, filename+'.wav')
engine.runAndWait()
print('Wav file saved!')
if compress==1:
import os
os.rename(filename+'.wav', 'temp.wav')
guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate)
os.remove('temp.wav')
if read==1:
engine.say(text)
engine.runAndWait()
def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
import pyttsx3
text = guan.pdf_to_text(pdf_path)
text = text.replace('\n', ' ')
if print_text==1:
print(text)
engine = pyttsx3.init()
voices = engine.getProperty('voices')
engine.setProperty('voice', voices[voice].id)
engine.setProperty("rate", rate)
if save==1:
import re
filename = re.split('[/,\\\]', pdf_path)[-1][:-4]
engine.save_to_file(text, filename+'.wav')
engine.runAndWait()
print('Wav file saved!')
if compress==1:
import os
os.rename(filename+'.wav', 'temp.wav')
guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate)
os.remove('temp.wav')
if read==1:
engine.say(text)
engine.runAndWait()
def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'):
# Note: Beside the installation of pydub, you may also need download FFmpeg on http://www.ffmpeg.org/download.html and add the bin path to the environment variable.
from pydub import AudioSegment
sound = AudioSegment.from_mp3(wav_path)
sound.export(output_filename,format="mp3",bitrate=bitrate)
## words
def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translation=1, show_link=1, translation_time=2, rest_time=1):
from bs4 import BeautifulSoup
import re
import urllib.request
import requests
import os
import pygame
import time
import ssl
import random
ssl._create_default_https_context = ssl._create_unverified_context
html = urllib.request.urlopen("https://www.guanjihuan.com/archives/4418").read().decode('utf-8')
if bre_or_ame == 'ame':
directory = 'words_mp3_ameProns/'
elif bre_or_ame == 'bre':
directory = 'words_mp3_breProns/'
exist_directory = os.path.exists(directory)
html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8')
if exist_directory == 0:
os.makedirs(directory)
soup = BeautifulSoup(html, features='lxml')
contents = re.findall('<h2>.*?</a></p>', html, re.S)
if random_on==1:
random.shuffle(contents)
if reverse==1:
contents.reverse()
for content in contents:
soup2 = BeautifulSoup(content, features='lxml')
all_h2 = soup2.find_all('h2')
for h2 in all_h2:
if re.search('\d*. ', h2.get_text()):
word = re.findall('[a-zA-Z].*', h2.get_text(), re.S)[0]
exist = os.path.exists(directory+word+'.mp3')
if not exist:
try:
if re.search(word, html_file):
r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True)
with open(directory+word+'.mp3', 'wb') as f:
for chunk in r.iter_content(chunk_size=32):
f.write(chunk)
except:
pass
print(h2.get_text())
try:
pygame.mixer.init()
track = pygame.mixer.music.load(directory+word+'.mp3')
pygame.mixer.music.play()
if show_link==1:
print('https://www.ldoceonline.com/dictionary/'+word)
except:
pass
translation = re.findall('<p>.*?</p>', content, re.S)[0][3:-4]
if show_translation==1:
time.sleep(translation_time)
print(translation)
time.sleep(rest_time)
pygame.mixer.music.stop()
print()
def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1):
from bs4 import BeautifulSoup
import re
import urllib.request
import requests
import os
import pygame
import time
import ssl
import random
ssl._create_default_https_context = ssl._create_unverified_context
html = urllib.request.urlopen("https://www.guanjihuan.com/archives/10897").read().decode('utf-8')
directory = 'prons/'
exist_directory = os.path.exists(directory)
html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/periodic_table_of_elements/"+directory).read().decode('utf-8')
if exist_directory == 0:
os.makedirs(directory)
soup = BeautifulSoup(html, features='lxml')
contents = re.findall('<h2>.*?</a></p>', html, re.S)
if random_on==1:
random.shuffle(contents)
for content in contents:
soup2 = BeautifulSoup(content, features='lxml')
all_h2 = soup2.find_all('h2')
for h2 in all_h2:
if re.search('\d*. ', h2.get_text()):
word = re.findall('[a-zA-Z].* \(', h2.get_text(), re.S)[0][:-2]
exist = os.path.exists(directory+word+'.mp3')
if not exist:
try:
if re.search(word, html_file):
r = requests.get("https://file.guanjihuan.com/words/periodic_table_of_elements/prons/"+word+".mp3", stream=True)
with open(directory+word+'.mp3', 'wb') as f:
for chunk in r.iter_content(chunk_size=32):
f.write(chunk)
except:
pass
print(h2.get_text())
try:
pygame.mixer.init()
track = pygame.mixer.music.load(directory+word+'.mp3')
pygame.mixer.music.play()
if show_link==1:
print('https://www.merriam-webster.com/dictionary/'+word)
except:
pass
translation = re.findall('<p>.*?</p>', content, re.S)[0][3:-4]
if show_translation==1:
time.sleep(translation_time)
print(translation)
time.sleep(rest_time)
pygame.mixer.music.stop()
print()