py.guanjihuan.com/PyPI/src/guan/Hamiltonian_of_examples.py

554 lines
23 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Module: Hamiltonian_of_examples
import guan
# 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0):
import numpy as np
on_site = np.array(on_site)
hopping = np.array(hopping)
if on_site.shape==():
dim = 1
else:
dim = on_site.shape[0]
hamiltonian = np.zeros((N*dim, N*dim), dtype=complex)
for i0 in range(N):
hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site
for i0 in range(N-1):
hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping
hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj()
if period == 1:
hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
return hamiltonian
# 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
import numpy as np
on_site = np.array(on_site)
hopping_1 = np.array(hopping_1)
hopping_2 = np.array(hopping_2)
if on_site.shape==():
dim = 1
else:
dim = on_site.shape[0]
hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)
for i1 in range(N1):
for i2 in range(N2):
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site
for i1 in range(N1-1):
for i2 in range(N2):
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1
hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
for i1 in range(N1):
for i2 in range(N2-1):
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2
hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj()
if period_1 == 1:
for i2 in range(N2):
hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1
hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
if period_2 == 1:
for i1 in range(N1):
hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
return hamiltonian
# 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
import numpy as np
on_site = np.array(on_site)
hopping_1 = np.array(hopping_1)
hopping_2 = np.array(hopping_2)
hopping_3 = np.array(hopping_3)
if on_site.shape==():
dim = 1
else:
dim = on_site.shape[0]
hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)
for i1 in range(N1):
for i2 in range(N2):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site
for i1 in range(N1-1):
for i2 in range(N2):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1
hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
for i1 in range(N1):
for i2 in range(N2-1):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2
hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
for i1 in range(N1):
for i2 in range(N2):
for i3 in range(N3-1):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj()
if period_1 == 1:
for i2 in range(N2):
for i3 in range(N3):
hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1
hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
if period_2 == 1:
for i1 in range(N1):
for i3 in range(N3):
hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2
hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
if period_3 == 1:
for i1 in range(N1):
for i2 in range(N2):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
return hamiltonian
# 构建有限尺寸的SSH模型哈密顿量
@guan.function_decorator
def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1):
import numpy as np
hamiltonian = np.zeros((2*N, 2*N))
for i in range(N):
hamiltonian[i*2+0, i*2+0] = onsite_1
hamiltonian[i*2+1, i*2+1] = onsite_2
hamiltonian[i*2+0, i*2+1] = v
hamiltonian[i*2+1, i*2+0] = v
for i in range(N-1):
hamiltonian[i*2+1, (i+1)*2+0] = w
hamiltonian[(i+1)*2+0, i*2+1] = w
if period==1:
hamiltonian[0, 2*N-1] = w
hamiltonian[2*N-1, 0] = w
return hamiltonian
# 获取Zigzag边的石墨烯条带的元胞间跃迁
@guan.function_decorator
def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
import numpy as np
hopping = np.zeros((4*N, 4*N), dtype=complex)
for i0 in range(N):
hopping[4*i0+0, 4*i0+0] = eta
hopping[4*i0+1, 4*i0+1] = eta
hopping[4*i0+2, 4*i0+2] = eta
hopping[4*i0+3, 4*i0+3] = eta
hopping[4*i0+1, 4*i0+0] = 1
hopping[4*i0+2, 4*i0+3] = 1
return hopping
# 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
import numpy as np
import guan
on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1)
hopping_2 = np.zeros((4, 4), dtype=complex)
hopping_2[3, 0] = 1
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
return hamiltonian
# 获取石墨烯有效模型沿着x方向的在位能和跃迁项其中动量qy为参数
@guan.function_decorator
def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
import numpy as np
constant = -np.sqrt(3)/2
h00 = np.zeros((2, 2), dtype=complex)
h00[0, 0] = staggered_potential
h00[1, 1] = -staggered_potential
h00[0, 1] = -1j*constant*t*np.sin(qy)
h00[1, 0] = 1j*constant*t*np.sin(qy)
h01 = np.zeros((2, 2), dtype=complex)
h01[0, 0] = eta
h01[1, 1] = eta
if valley_index == 0:
h01[0, 1] = constant*t*(-1j/2)
h01[1, 0] = constant*t*(-1j/2)
else:
h01[0, 1] = constant*t*(1j/2)
h01[1, 0] = constant*t*(1j/2)
return h00, h01
# 获取BHZ模型的在位能和跃迁项
@guan.function_decorator
def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
import numpy as np
E_s = C+M-4*(D+B)/(a**2)
E_p = C-M-4*(D-B)/(a**2)
V_ss = (D+B)/(a**2)
V_pp = (D-B)/(a**2)
V_sp = -1j*A/(2*a)
H0 = np.zeros((4, 4), dtype=complex)
H1 = np.zeros((4, 4), dtype=complex)
H2 = np.zeros((4, 4), dtype=complex)
H0[0, 0] = E_s
H0[1, 1] = E_p
H0[2, 2] = E_s
H0[3, 3] = E_p
H1[0, 0] = V_ss
H1[1, 1] = V_pp
H1[2, 2] = V_ss
H1[3, 3] = V_pp
H1[0, 1] = V_sp
H1[1, 0] = -np.conj(V_sp)
H1[2, 3] = np.conj(V_sp)
H1[3, 2] = -V_sp
H2[0, 0] = V_ss
H2[1, 1] = V_pp
H2[2, 2] = V_ss
H2[3, 3] = V_pp
H2[0, 1] = 1j*V_sp
H2[1, 0] = 1j*np.conj(V_sp)
H2[2, 3] = -1j*np.conj(V_sp)
H2[3, 2] = -1j*V_sp
return H0, H1, H2
# 获取半个BHZ模型的在位能和跃迁项自旋向上
@guan.function_decorator
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
import numpy as np
E_s = C+M-4*(D+B)/(a**2)
E_p = C-M-4*(D-B)/(a**2)
V_ss = (D+B)/(a**2)
V_pp = (D-B)/(a**2)
V_sp = -1j*A/(2*a)
H0 = np.zeros((2, 2), dtype=complex)
H1 = np.zeros((2, 2), dtype=complex)
H2 = np.zeros((2, 2), dtype=complex)
H0[0, 0] = E_s
H0[1, 1] = E_p
H1[0, 0] = V_ss
H1[1, 1] = V_pp
H1[0, 1] = V_sp
H1[1, 0] = -np.conj(V_sp)
H2[0, 0] = V_ss
H2[1, 1] = V_pp
H2[0, 1] = 1j*V_sp
H2[1, 0] = 1j*np.conj(V_sp)
return H0, H1, H2
# 获取半个BHZ模型的在位能和跃迁项自旋向下
@guan.function_decorator
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
import numpy as np
E_s = C+M-4*(D+B)/(a**2)
E_p = C-M-4*(D-B)/(a**2)
V_ss = (D+B)/(a**2)
V_pp = (D-B)/(a**2)
V_sp = -1j*A/(2*a)
H0 = np.zeros((2, 2), dtype=complex)
H1 = np.zeros((2, 2), dtype=complex)
H2 = np.zeros((2, 2), dtype=complex)
H0[0, 0] = E_s
H0[1, 1] = E_p
H1[0, 0] = V_ss
H1[1, 1] = V_pp
H1[0, 1] = np.conj(V_sp)
H1[1, 0] = -V_sp
H2[0, 0] = V_ss
H2[1, 1] = V_pp
H2[0, 1] = -1j*np.conj(V_sp)
H2[1, 0] = -1j*V_sp
return H0, H1, H2
# 一维链的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_simple_chain(k):
import guan
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
return hamiltonian
# 二维方格子的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_square_lattice(k1, k2):
import guan
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
return hamiltonian
# 准一维方格子条带的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
import numpy as np
import guan
h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
for i in range(N-1):
h00[i, i+1] = 1
h00[i+1, i] = 1
if period == 1:
h00[N-1, 0] = 1
h00[0, N-1] = 1
for i in range(N):
h01[i, i] = 1
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
return hamiltonian
# 三维立方格子的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_cubic_lattice(k1, k2, k3):
import guan
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
return hamiltonian
# SSH模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_ssh_model(k, v=0.6, w=1):
import numpy as np
import cmath
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
hamiltonian[1,0] = v+w*cmath.exp(1j*k)
return hamiltonian
# 石墨烯的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
import numpy as np
import cmath
import math
if a == 'default':
a = 1/math.sqrt(3)
h0 = np.zeros((2, 2), dtype=complex) # mass term
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
h0[0, 0] = staggered_potential
h0[1, 1] = -staggered_potential
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
h1[0, 1] = h1[1, 0].conj()
hamiltonian = h0 + h1
return hamiltonian
# 石墨烯有效模型的哈密顿量(倒空间)
@guan.function_decorator
def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
import numpy as np
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0, 0] = staggered_potential
hamiltonian[1, 1] = -staggered_potential
constant = -np.sqrt(3)/2
if valley_index == 0:
hamiltonian[0, 1] = constant*t*(qx-1j*qy)
hamiltonian[1, 0] = constant*t*(qx+1j*qy)
else:
hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
return hamiltonian
# 石墨烯有效模型离散化后的哈密顿量(倒空间)
@guan.function_decorator
def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
import numpy as np
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0, 0] = staggered_potential
hamiltonian[1, 1] = -staggered_potential
constant = -np.sqrt(3)/2
if valley_index == 0:
hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy))
hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy))
else:
hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
return hamiltonian
# 准一维Zigzag边石墨烯条带的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
import numpy as np
import guan
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
for i in range(N):
h00[i*4+0, i*4+0] = M
h00[i*4+1, i*4+1] = -M
h00[i*4+2, i*4+2] = M
h00[i*4+3, i*4+3] = -M
h00[i*4+0, i*4+1] = t
h00[i*4+1, i*4+0] = t
h00[i*4+1, i*4+2] = t
h00[i*4+2, i*4+1] = t
h00[i*4+2, i*4+3] = t
h00[i*4+3, i*4+2] = t
for i in range(N-1):
h00[i*4+3, (i+1)*4+0] = t
h00[(i+1)*4+0, i*4+3] = t
if period == 1:
h00[(N-1)*4+3, 0] = t
h00[0, (N-1)*4+3] = t
for i in range(N):
h01[i*4+1, i*4+0] = t
h01[i*4+2, i*4+3] = t
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
return hamiltonian
# Haldane模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'):
import numpy as np
import cmath
import math
if phi == 'default':
phi=math.pi/4
if a == 'default':
a=1/math.sqrt(3)
h0 = np.zeros((2, 2), dtype=complex) # mass term
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
h0[0, 0] = M
h0[1, 1] = -M
h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
h1[0, 1] = h1[1, 0].conj()
h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
return hamiltonian
# 准一维Haldane模型条带的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0):
import numpy as np
import cmath
import math
if phi == 'default':
phi=math.pi/4
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
for i in range(N):
h00[i*4+0, i*4+0] = M
h00[i*4+1, i*4+1] = -M
h00[i*4+2, i*4+2] = M
h00[i*4+3, i*4+3] = -M
h00[i*4+0, i*4+1] = t1
h00[i*4+1, i*4+0] = t1
h00[i*4+1, i*4+2] = t1
h00[i*4+2, i*4+1] = t1
h00[i*4+2, i*4+3] = t1
h00[i*4+3, i*4+2] = t1
h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
for i in range(N-1):
h00[i*4+3, (i+1)*4+0] = t1
h00[(i+1)*4+0, i*4+3] = t1
h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
if period == 1:
h00[(N-1)*4+3, 0] = t1
h00[0, (N-1)*4+3] = t1
h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi)
h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj()
h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi)
h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj()
for i in range(N):
h01[i*4+1, i*4+0] = t1
h01[i*4+2, i*4+3] = t1
h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
if i != 0:
h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
for i in range(N-1):
h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
return hamiltonian
# 一个量子反常霍尔效应的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
import numpy as np
import math
hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2)
hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
return hamiltonian
# BHZ模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
import numpy as np
import math
hamiltonian = np.zeros((4, 4), dtype=complex)
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
hamiltonian[0, 0] = varepsilon+d3
hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = np.conj(d1_d2)
hamiltonian[1, 0] = d1_d2
hamiltonian[2, 2] = varepsilon+d3
hamiltonian[3, 3] = varepsilon-d3
hamiltonian[2, 3] = -d1_d2
hamiltonian[3, 2] = -np.conj(d1_d2)
return hamiltonian
# 半BHZ模型的哈密顿量自旋向上倒空间
@guan.function_decorator
def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
import numpy as np
import math
hamiltonian = np.zeros((2, 2), dtype=complex)
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
hamiltonian[0, 0] = varepsilon+d3
hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = np.conj(d1_d2)
hamiltonian[1, 0] = d1_d2
return hamiltonian
# 半BHZ模型的哈密顿量自旋向下倒空间
@guan.function_decorator
def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
import numpy as np
import math
hamiltonian = np.zeros((2, 2), dtype=complex)
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
hamiltonian[0, 0] = varepsilon+d3
hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = -d1_d2
hamiltonian[1, 0] = -np.conj(d1_d2)
return hamiltonian
# BBH模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
import numpy as np
import cmath
# label of atoms in a unit cell
# (2) —— (0)
# | |
# (1) —— (3)
hamiltonian = np.zeros((4, 4), dtype=complex)
hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
hamiltonian[2, 0] = np.conj(hamiltonian[0, 2])
hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
return hamiltonian
# Kagome模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_kagome_lattice(kx, ky, t=1):
import numpy as np
import math
k1_dot_a1 = kx
k2_dot_a2 = kx/2+ky*math.sqrt(3)/2
k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2
hamiltonian = np.zeros((3, 3), dtype=complex)
hamiltonian[0, 1] = 2*math.cos(k1_dot_a1)
hamiltonian[0, 2] = 2*math.cos(k2_dot_a2)
hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
hamiltonian = hamiltonian + hamiltonian.transpose().conj()
hamiltonian = -t*hamiltonian
return hamiltonian