Update matrix_running_time_for_different_num_of_cpu_cores.py
This commit is contained in:
		| @@ -12,36 +12,42 @@ B = np.random.rand(n, n) | |||||||
|  |  | ||||||
| # 矩阵行列式 | # 矩阵行列式 | ||||||
| start_time = time.time() | start_time = time.time() | ||||||
| det_A = np.linalg.det(A) | for _ in range(10): | ||||||
| det_time = time.time() - start_time |     det_A = np.linalg.det(A) | ||||||
|  | det_time = (time.time() - start_time)/10 | ||||||
| print(f"矩阵行列式时间: {det_time:.3f} 秒") | print(f"矩阵行列式时间: {det_time:.3f} 秒") | ||||||
|  |  | ||||||
| # 矩阵乘法 | # 矩阵乘法 | ||||||
| start_time = time.time() | start_time = time.time() | ||||||
| C = np.dot(A, B) | for _ in range(10): | ||||||
| multiply_time = time.time() - start_time |     C = np.dot(A, B) | ||||||
|  | multiply_time = (time.time() - start_time)/10 | ||||||
| print(f"矩阵乘法时间: {multiply_time:.3f} 秒") | print(f"矩阵乘法时间: {multiply_time:.3f} 秒") | ||||||
|  |  | ||||||
| # 矩阵求逆 | # 矩阵求逆 | ||||||
| start_time = time.time() | start_time = time.time() | ||||||
| inv_A = np.linalg.inv(A) | for _ in range(10): | ||||||
| inv_time = time.time() - start_time |     inv_A = np.linalg.inv(A) | ||||||
|  | inv_time = (time.time() - start_time)/10 | ||||||
| print(f"矩阵求逆时间: {inv_time:.3f} 秒") | print(f"矩阵求逆时间: {inv_time:.3f} 秒") | ||||||
|  |  | ||||||
| # 矩阵的秩 | # 矩阵的秩 | ||||||
| start_time = time.time() | start_time = time.time() | ||||||
| rank_A = np.linalg.matrix_rank(A) | for _ in range(10): | ||||||
| rank_time = time.time() - start_time |     rank_A = np.linalg.matrix_rank(A) | ||||||
|  | rank_time = (time.time() - start_time)/10 | ||||||
| print(f"矩阵的秩时间: {rank_time:.3f} 秒") | print(f"矩阵的秩时间: {rank_time:.3f} 秒") | ||||||
|  |  | ||||||
| # 矩阵的特征值 | # 矩阵的特征值 | ||||||
| start_time = time.time() | start_time = time.time() | ||||||
| eigenvalues_A = np.linalg.eigvals(A) | for _ in range(10): | ||||||
| eigen_time = time.time() - start_time |     eigenvalues_A = np.linalg.eigvals(A) | ||||||
|  | eigen_time = (time.time() - start_time)/10 | ||||||
| print(f"矩阵特征值时间: {eigen_time:.3f} 秒") | print(f"矩阵特征值时间: {eigen_time:.3f} 秒") | ||||||
|  |  | ||||||
| # 矩阵的特征值和特征向量 | # 矩阵的特征值和特征向量 | ||||||
| start_time = time.time() | start_time = time.time() | ||||||
| eigenvalues_A, eigenvector_A = np.linalg.eig(A) | for _ in range(10): | ||||||
| eigen_time = time.time() - start_time |     eigenvalues_A, eigenvector_A = np.linalg.eig(A) | ||||||
|  | eigen_time = (time.time() - start_time)/10 | ||||||
| print(f"矩阵特征值和特征向量时间: {eigen_time:.3f} 秒") | print(f"矩阵特征值和特征向量时间: {eigen_time:.3f} 秒") | ||||||
		Reference in New Issue
	
	Block a user